Advertisement

Combustion, Explosion, and Shock Waves

, Volume 54, Issue 6, pp 654–663 | Cite as

Effect of Diffusion of Coal Pyrolysis Products on the Ignition Characteristics and Conditions of Coal–Water Fuel Droplets

  • G. V. Kuznetsov
  • V. V. Salomatov
  • S. V. Syrodoi
Article
  • 4 Downloads

Abstract

This paper presents a theoretical study of the thermal preparation and ignition of a coal–water fuel droplet under intense radiative-convective heating with diffusion of gaseous pyrolysis products of the solid fuel into the ambient gaseous medium. It has been found that gaseous pyrolysis products are ignited at a distance from the heating surface approximately equal to the radius of the droplet, after which the coke of the main fuel layer is ignited. The time between the ignition of volatiles and the coke residue is less than 0.5 s. Comparison of the ignition delays obtained by mathematical modeling and experimentally has shown satisfactory agreement between theoretical and experimental values.

Keywords

coal–water fuel coke ignition ignition of volatile diffusion of pyrolysis products 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. P. Longwell, E. S. Rubin, and J. Wilson, “Coal: Energy for the Future,” Prog. Energy Combust. Sci. 21 (4), 269–360 (1995).CrossRefGoogle Scholar
  2. 2.
    B. G. Miller, “Coal–Water Slurry Fuel Utilization and Industrial Boilers,” Chem. Eng. Prog. 85 (3), 29–38 (1989).Google Scholar
  3. 3.
    G. Papachristodoulou and O. Trass, “Coal Slurry Fuel Technology,” Can. J. Chem. Eng. 65 (2), 177–201 (1987).CrossRefGoogle Scholar
  4. 4.
    A. Kijo-Kleczkowska, “Combustion of Coal–Water Suspensions,” Fuel 90, 865–877 (2011).CrossRefGoogle Scholar
  5. 5.
    W. Gajewski, A. Kijo-Kleczkowska, J. Leszczyn, “Analysis of Cyclic Combustion of Solid Fuels,” Fuel 88, 221–234 (2009).CrossRefGoogle Scholar
  6. 6.
    R. H. Essenhigh, K. M. Mahendra, and D. W. Shaw, “Ignition of Coal Particles: A Review,” Combust. Flame 77 (1), 3–30 (1989).CrossRefGoogle Scholar
  7. 7.
    Z. Huang, et al., “Theoretical Analysis on CWM Drop Combustion History,” in Proc. 8th Int. Symp. Coal Slurry Fuels Preparation and Utilization (USA, Orlando, 1986), Part 1, pp. 343–358.Google Scholar
  8. 8.
    K. J. Matthews and A. R. Jones, “Composition of Coal–Water Slurry Combustion and Ash Deposition Characteristics,” in Proc. 8th Int. Symp. Coal Slurry Fuels Preparation and Utilization (USA, Orlando, 1986), Part 1, pp. 388–407.Google Scholar
  9. 9.
    V. V. Salomatov, S. V. Syrodoy, and N. Y. Gutareva, “Modelling of Heat and Mass Transfer to Solve the Problem of Particle Ignition Water–Coal Fuel,” IOP Conf. Ser.: Mater. Sci. Eng. 66, 012040 (2014).CrossRefGoogle Scholar
  10. 10.
    G. V. Kuznetsov, V. V. Salomatov, and S. V. Syrodoy, “Numerical Simulation of Ignition of Water Coal Fuel Particles,” Fiz. Goreniya Vzryva 51 (4), 12–19 (2015) [Combust., Expl., Shock Waves 51 (4), 409–415 (2015)].Google Scholar
  11. 11.
    G. V. Kuznetsov, V. V. Salomatov, and S. V. Syrodoi, “The Influence of Heat Transfer Conditions on the Parameters Characterizing the Ignition of Coal–Water Fuel Particles,” Teploenergetika, No. 10, 16–21 (2015) [Thermal Eng., No. 10, 703–707 (2015)].Google Scholar
  12. 12.
    S. V. Syrodoi, G. V. Kuznetsov, and V. V. Salomatov, “Effect of the Shape of Particles on the Characteristics of the Ignition of Coal–Water Fuel,” Khim. Tv. Topliva, No. 6, 28–34 (2015) [Solid Fuel Chem., No. 6, 365–371 (2015)].Google Scholar
  13. 13.
    S. V. Syrodoi, V. V. Salomatov, and G. V. Kuznetsov, “Heat and Mass Transfer in a Coal–Water Fuel Particle at the Stage of ‘Thermal’ Treatment,” Teplofiz. Aeromekh. 23 (4), 627–636 (2016) [Thermophys. Aeromech. 23 (4), 603–612 (2016)].Google Scholar
  14. 14.
    S. V. Syrodoi, G. V. Kuznetsov, A. V. Zhakharevicha, N. Y. Gutareva, and V. V. Salomatov, “The Influence of the Structure Heterogeneity on the Characteristics and Conditions of Coal–Water Fuel Particles Ignition in High Temperature Environment,” Combust. Flame 80, 196–206 (2017).CrossRefGoogle Scholar
  15. 15.
    D. A. Frank-Kamenetskii, Diffusion and Heat Transfer in Chemical Kinetics (Izd. Akad. Nauk SSSR, Moscow, 1947; Plenum, New York, 1969).Google Scholar
  16. 16.
    D. B. Spalding, Some Fundamentals of Combustion (Academic Press, New York, 1955)Google Scholar
  17. 17.
    Y. A. Kook, W. B. Seung, and E. C. Chang, “Investigation of a Coal–Water Slurry Droplet Exposed to Hot Gas Stream,” Combust. Sci. Technol. 97 (4), 429–447.Google Scholar
  18. 18.
    O. Knacke and I. N. Stranski, “The Mechanism of Evaporation,” Prog. Metal Phys. 6, 181–235 (1956).ADSCrossRefGoogle Scholar
  19. 19.
    A. V. Potapkin and D. Yu. Moskvichev, “Calculation of Shock-Wave Parameters Far from Origination by Combined Numerical-Analytical Methods,” Prikl. Mekh. Tekh. Fiz. 52 (2), 15–26 (2011) [J. Appl. Mech. Tech. Phys. 52 (2), 169–177 (2011)].zbMATHGoogle Scholar
  20. 20.
    A. A. Khashchenko, O. V. Vecher, and E. I. Diskaeva, “Temperature Dependence of the Rate of Evaporation of Liquids from the Free Surface and the Rate of Liquid Boiling on a Solid Heating Surface,” Izv. Alt. Gos. Univ. 89 (1), 84–87 (2016).Google Scholar
  21. 21.
    H. Enkhzhargal and V. V. Salomatov, “Mathematical Modeling of Heat Treatment and Combustion of a Coal Particle. V. Burnout Stage,” Inzh.-Fiz. Zh. 84 (4), 836–841 (2011).Google Scholar
  22. 22.
    V. I. Maksimov and T. A. Nagornova, “Influence of Heatsink from Upper Boundary on Industrial Premises Thermal Conditions at Gas Infrared Emitter Operation,” EPJ Web of Conf. 76, 01006 (2014).CrossRefGoogle Scholar
  23. 23.
    A. A. Agroskin and V. B. Gleibman, Thermal Physics of Solid Propellants (Nedra, Moscow, 1980) [in Russian].Google Scholar
  24. 24.
    M. P. Vukalovich, S. L. Rivkin, and A. A. Aleksandrov, Tables of Thermophysical Properties of Water and Water Vapor (Izd. Standartov, Moscow, 1969) [in Russian].Google Scholar
  25. 25.
    V. G. Lipovich, Chemistry and Processing of Coal (Khimiya, Moscow, 1988) [in Russian].Google Scholar
  26. 26.
    V. V. Pomerantsev, Fundamentals of the Practical Theory of Combustion (Energoatomizdat, Leningrad, 1986) [in Russian].Google Scholar
  27. 27.
    H. Watanabe, M. Ashizawa, M. Otaka, S. Hara, and A. Inumaru, “Development on Numerical Simulation Technology of Heavy Oil Gasifier,” CRIEPI Report No. W01023 (Japan, 2002).Google Scholar
  28. 28.
    J. Mantzaras, “Catalytic Combustion of Syngas,” Combust. Sci. Technol. 180, 1137–1168 (2008).CrossRefGoogle Scholar
  29. 29.
    W. C. Jian, J. Wen, S. Lu, and J. Guo, “Single-Step Chemistry Model and Transport Coefficient Model for Hydrogen Combustion,” Sci. Chin. Technol. Sci. 55, 2163–2168 (2012).CrossRefGoogle Scholar
  30. 30.
    X. Zhang, T. Wang, J. Xu, S. Zheng, and X. Hou, “Study on Flame–Vortex Interaction in a Spark Ignition Engine Fueled with Methane/Carbon Dioxide Gases,” J. Energy Inst. 91, 133–144 (2018).CrossRefGoogle Scholar
  31. 31.
    P. J. Roache, Computational Fluid Dynamics (Hermosa, Albuquerque, 1976).zbMATHGoogle Scholar
  32. 32.
    A. A. Samarskii, “High-Order-Accuracy Schemes for a Multidimensional Heat-Conduction Equations,” Zh. Vychisl. Mat. Mat. Fiz. 5 (3), 812–840 (1963).Google Scholar
  33. 33.
    A. A. Samarskii, “Locally One-Dimensional Difference Schemes on Nonuniform Grids,” Zh. Vychisl. Mat. Mat. Fiz. 3 (3), 431–466 (1963).Google Scholar
  34. 34.
    A. A. Samarskii and B. D. Moiseenko, “Cost-Effective Shock-Capturing Scheme for the Multidimensional Stefan Problem,” Zh. Vychisl. Mat. Mat. Fiz. 5 (5), 816–827 (1965).Google Scholar
  35. 35.
    A. A. Shershnev, Pneumatic Combustors (Gosenergoizdat, Leningrad–Moscow, 1949) [in Russian].Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • G. V. Kuznetsov
    • 1
  • V. V. Salomatov
    • 2
  • S. V. Syrodoi
    • 1
  1. 1.Tomsk Polytechnic UniversityTomskRussia
  2. 2.Kutateladze Institute of Thermophysics, Siberian BranchRussian Academy of SciencesNovosibirskRussia

Personalised recommendations