Combustion, Explosion, and Shock Waves

, Volume 54, Issue 6, pp 629–641 | Cite as

Effect of the Wave Structure of the Flow in a Supersonic Combustor on Ignition and Flame Stabilization

  • M. A. GoldfeldEmail author
  • Yu. V. Zakharova
  • A. V. Fedorov
  • N. N. Fedorova


Results of numerical and experimental investigations of a high-velocity flow in a plane channel with sudden expansion in the form of a backward-facing step, which is used for flame stabilization in a supersonic flow, are presented. The experiments are performed in the IT-302M high-enthalpy short-duration wind tunnel under the following test conditions: Mach number at the combustor entrance 2.8, Reynolds number 30 · 106 m−1, and total temperature T0 = 2000 K, i.e., close to flight conditions at M = 6. The numerical simulations are performed by solving full unsteady Reynolds-averaged Navier–Stokes equations supplemented with the kω SST turbulence model and a system of chemical kinetics including 38 forward and backward reactions of combustion of a hydrogen–air mixture. Three configurations of the backward-facing step are considered: straight step without preliminary actions on the flow, with preliminary compression, and with preliminary expansion of the flow. It is demonstrated that the backward-facing step configuration exerts a significant effect on the separation region size, pressure distribution, and temperature in the channel behind the step, which are the parameters determining self-ignition of the mixture. The computed results show that preliminary compression of the flow creates conditions for effective ignition of the mixture. As a result, it is possible to obtain ignition of a premixed hydrogen–air mixture and its stable combustion over the entire channel height.


supersonic flow turbulence shock wave expansion wave combustor premixed mixture ignition 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. E. Larson and A. R. Hanson, “A Review of Research on Base Flow,” AIAA Paper No. 65–825 (1965).Google Scholar
  2. 2.
    I. E. Alber and L. Lees, “Integral Theory for Supersonic Turbulent Base Flow,” AIAA J. 6 (7), 1343–1351 (1968).ADSCrossRefGoogle Scholar
  3. 3.
    D. C. Reda and R. H. Page, “Supersonic Turbulent Flow Reattachment Downstream of Two-Dimensional Backward Facing Step,” AIAA Paper No. 70–108 (1970).Google Scholar
  4. 4.
    J. C. Dutton, J. L. Herrin, M. J. Molezzi, et al., “Recent Progress on High-Speed Separated Base Flows,” AIAA Paper No. 95–0472 (1995).CrossRefGoogle Scholar
  5. 5.
    H. Liu, B. Wang, Y. Guo, et al., “Research Article Effects of Inflow Mach Number and Step Height on Supersonic Flows over a Backward-Facing Step,” Adv. Mech. Eng. 2013 (2013); Article ID 147916;
  6. 6.
    J. L. Herrin and J. C. Dutton, “Supersonic Near-Wake Afterbody Boattailing Effects on Axisymmetric Bodies,” J. Spacecraft Rockets 31 (6), 1021–1028 (1994).ADSCrossRefGoogle Scholar
  7. 7.
    B. F. Armaly, F. Durst, J. C. F. Pereira, and B. Schoenung, “Experimental and Theoretical Investigation of Backward Facing Step Flow,” J. Fluid Mech. 127, 473–496 (1983).ADSCrossRefGoogle Scholar
  8. 8.
    S. Thangam and D. D. Knight, “Effect of Step Height on the Separated Flow past a Backward Facing Step,” Phys. Fluids. A 1 (3), 604–615 (1989).ADSCrossRefGoogle Scholar
  9. 9.
    F. Scarano, C. Benocci, and M. L. Riethmuller, “Pattern Recognition Analysis of the Turbulent Flow Past a Backward Facing Step,” Phys. Fluids 11 (12), 3808–3818 (1999).ADSCrossRefzbMATHGoogle Scholar
  10. 10.
    L. Rollstin, “Measurement of Inflight Base Pressure on an Artillery Fired Projectile,” AIAA Paper No. 87–2427 (1987).CrossRefGoogle Scholar
  11. 11.
    R. Deepak, S. L. Gai, ad A. J. Neely, “A Computational Study of High Enthalpy Flow over a Rearward Facing Step,” AIAA Paper No. 2010–444 (2010).zbMATHGoogle Scholar
  12. 12.
    V. Statnikov, D. Saile, J.-H. Mei, et al., “Experimental and Numerical Investigation of the Turbulent Wake Flow of a Generic Space Launcher Configuration,” Prog. Flight Phys. 7, 329–350 (2015).CrossRefGoogle Scholar
  13. 13.
    J. Parker-Lamb and W. L. Oberkampf, “Review and Development of Base Pressure and Base Heating Correlations in Supersonic Flow,” J. Spacecraft Rockets 32 (1), 8–23 (1995).ADSCrossRefGoogle Scholar
  14. 14.
    M. K. Aukin and R. K Tagirov, “Calculation of the Base Pressure and Enthalpy behind a Plane or Axisymmetric Step in a Supersonic Flow with due Allowance for the Influence of the Initial Boundary Layer,” Izv. Ross. Akad. Nauk, Mekh. Zhidk. Gaza, No. 2, 110–119 (1999).zbMATHGoogle Scholar
  15. 15.
    T. Mathur and J. C. Dutton, “Velocity and Turbulence Measurements in a Supersonic Base Flow with Mass Bleed,” AIAA J. 34 (6), 1153–1159 (1996).ADSCrossRefGoogle Scholar
  16. 16.
    D. R. Smith and A. J. Smits, “The Rapid Expansion of a Turbulent Boundary Layer in a Supersonic Flow,” J. Theor. Comput. Fluid Dyn. 2 (5/6), 319–328 (1991).ADSCrossRefGoogle Scholar
  17. 17.
    S. A. Arnette, M. Samimy, and G. S. Elliott, “The Effect of Expansion on the Large Scale Structure of a Compressible Turbulent Boundary Layer,” AIAA Paper No. 93–2991 (1993).CrossRefGoogle Scholar
  18. 18.
    S. M. Correa and R. E. Warren, “Supersonic Sudden-Expansion Flow with Fluid Injection: an Experimental and Computational Study,” AIAA Paper No. 89–0389 (1989).Google Scholar
  19. 19.
    A. S. Yang, W. H. Hsieh, and K. K. Kuo, “Theoretical Study of Supersonic Flow Separation over a Rearward-Facing Step,” J. Propul. Power 13 (2), 324–326 (1997).CrossRefGoogle Scholar
  20. 20.
    P. Manna and D. Chakraborty, “Numerical Investigation of Transverse Sonic Injection in a Non-Reacting Supersonic Combustor,” J. Aerospace Eng. 219 (3), 205–216 (2005).Google Scholar
  21. 21.
    K. M. Smith and J. C. Dutton, “Investigation of Large-Scale Structures in Supersonic Planar Base Flows,” AIAA J. 34 (6), 1146–1152 (1996).ADSCrossRefGoogle Scholar
  22. 22.
    B. Sainte-Rose, N. Bertier, S. Deck, and F. Dupoirieux, “A DES Method Applied to a Backward Facing Step Reactive Flow,” C. R. Akad. Sci., Ser. IIB: Mecanique 337, 340–351 (2009).ADSGoogle Scholar
  23. 23.
    A. Karimi, S. D. Wijeyakulasurya, and M. Razi Nalim, “Numerical Study of Supersonic Flow over Backward-Facing Step for Scramjet Application,” AIAA Paper No. 2012–4001 (2012).CrossRefGoogle Scholar
  24. 24.
    J. D. Abbitt III, C. Segal, J. C. McDaniel, et al., “Experimental Supersonic Hydrogen Combustion Employing Staged Injection behind a Rearward-Facing Step,” J. Propul. Power 9 (3), 472–478 (1993).ADSCrossRefGoogle Scholar
  25. 25.
    S. Takahashi, G. Yamano, K. Wakai, et al., “Self-Ignition and Transition to Flame-Holding in a Rectangular Scramjet Combustor with a Backward Step,” Proc. Combust. Inst. 28 (1), 705–712 (2000).CrossRefGoogle Scholar
  26. 26.
    C. Morrison, H.-Y. Lyu, and R. Edelman, “Fuel Sensitivity Studies Based on a Design System for High Speed Airbreathing Combustors,” ISABE 99–7235 (1999).Google Scholar
  27. 27.
    W. Huang, M. Pourkashanian, L. Ma, et al. “Investigation on the Flameholding Mechanisms in Supersonic Flows: Backward-Facing Step and Cavity Flameholder,” J. Visualization 14 (1), 63–74 (2011).CrossRefGoogle Scholar
  28. 28.
    K. Uenishi, R. C. Rogers, and G. B. Northam, “Numerical Predictions of a Rearward-Facing-Step Flow in a Supersonic Combustor,” J. Propul. Power 5 (2), 158–167 (1988).ADSCrossRefGoogle Scholar
  29. 29.
    F. H. Tsau and W. C. Strahle, “Prediction of Turbulent Combustion Flowfields behind a Backward-Facing Step,” J. Propul. Power 6 (3), 227–236 (1990).CrossRefGoogle Scholar
  30. 30.
    M. G. Owens, S. Tehranian, C. Segal, and V. A. Vinogradov, “Flame-Holding Configurations for Kerosene Combustion in a Mach 1.8 Airflow,” J. Propul. Power 14 (4), 456–461 (1998).CrossRefGoogle Scholar
  31. 31.
    I. A. Bedarev, M. A. Goldfeld, Yu. B. Zakharova, and N. N. Fedorova, “Investigation of Temperature Fields in Supersonic Flow behind a Backward-Facing Step,” Teplofiz. Aeromekh. 16 (3), 375–386 (2009) [Thermophys. Aeromech. 16 (3), 355–366 (2009)].Google Scholar
  32. 32.
    M. A. Goldfeld, Yu. B. Zakharova, and N. N. Fedorova, “A Numerical and Experimental Study of the High-Enthalpy High-Speed Cavity Flow,” Teplofiz. Aeromekh. 19 (6), 673–687 (2012) [Thermophys. Aeromech. 19 (6), 541–554 (2012)].Google Scholar
  33. 33.
    L. N. Puzyrev and M. I. Yaroslavtsev, “Stabilization of Gas Parameters in the Settling Chamber of a Hypersonic Hotshot Wind Tunnel,” Izv. Sib. Otd. Akad. Nauk SSSR, No. 5, 135–140 (1990).Google Scholar
  34. 34.
    Yu. V. Gromyko, A. A. Maslov, A. A. Sidorenko, et al., “Calculation of Flow Parameters in Hypersonic Wind Tunnels,” Vestnik Novosib. Gos. Univ., Ser. Fiz. 6 (2), 10–16 (2011).Google Scholar
  35. 35.
    J. H. Tien and R. J. Stalker, “Release of Chemical Energy by Combustion in a Supersonic Mixing Layer of Hydrogen and Air,” Combust. Flame 130, 329–348 (2002).CrossRefGoogle Scholar
  36. 36.
    I. A. Bedarev and A. V. Fedorov, “Comparative Analysis of Three Mathematical Models of Hydrogen Ignition,” Fiz. Goreniya Vzryva 42 (1), 26–33 (2006) [Combust., Expl., Shock Waves 42 (1), 19–26 (2006)].Google Scholar
  37. 37.
    Tuncer Cebeci, Analysis of Turbulent Flow (Elsevier, 2004).Google Scholar
  38. 38.
    N. N. Fedorova, I. A. Bedarev, Y. V. Zhakharova, and M. A. Goldfeld, “Step Configuration Influence on Combustion in Premixed Hydrogen–Air Supersonic Flow,” in ECCOMAS 2012—European Congress on Computational Methods in Applied Sciences and Engineering: E-Book Full Papers (2012), pp. 6074–6088.Google Scholar
  39. 39.
    M. A. Goldfeld, N. N. Fedorova, and Yu. V. Zakharova, “Influence of Step Configuration on Supersonic Turbulent Flow in Base Region,” in Proc. of 51st Israel Annu. Conf. on Aerospace Sciences, Tel Aviv–Haifa, Israel, February 23–24, 2011.Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • M. A. Goldfeld
    • 1
    Email author
  • Yu. V. Zakharova
    • 1
  • A. V. Fedorov
    • 1
  • N. N. Fedorova
    • 1
    • 2
  1. 1.Khristianovich Institute of Theoretical and Applied Mechanics, Siberian BranchRussian Academy of SciencesNovosibirskRussia
  2. 2.Novosibirsk State University of Architecture and Civil Engineering (SIBSTRIN)NovosibirskRussia

Personalised recommendations