Advertisement

Biophysics

, Volume 64, Issue 1, pp 31–37 | Cite as

The Search for Ways to Improve the Catalytic Activity of Encapsulated Horseradish Peroxidase

  • M. G. FomkinaEmail author
  • G. M. Minkabirova
  • A. M. Montrel
  • S. Zh. Ibadullaeva
MOLECULAR BIOPHYSICS
  • 5 Downloads

Abstract—We consider a previously proposed method for encapsulation of enzymes, which employs the layer-by-layer adsorption of oppositely charged polyelectrolytes onto composite spherulites (calcium carbonate/protein) followed by dissolution of the calcium carbonate support. The goal of this work is to choose conditions for encapsulation of the enzyme horseradish peroxidase by the method so that the catalytic activity of the encapsulated enzyme would be comparable with that of the soluble one. The steps of the fabrication of polyelectrolyte microcapsules with the studied enzyme have been tested. A protocol for obtaining composite spherulites of the desired size ranging from 2 to 10 µm has been developed. It is shown that the catalytic activity of horseradish peroxidase encapsulated in a microcapsule with a positively charged inner surface of the microcapsule envelope (the inner layer modified by polycation polyallylamine hydrochloride) is significantly higher than that of the enzyme encapsulated in a microcapsule with a negatively charged inner layer (modified by polyanion sodium polystyrene sulfonate). At the support dissolution step, ethylene glycol bis-(β-aminoethyl) tetraacetic acid (EGTA), a decalcifying agent used to dissolve CaCO3 from horseradish peroxidase microcapsules, is significantly less detrimental to enzymes than ethylene diamine tetraacetic acid. The catalytic activity of horseradish peroxidase encapsulated in polyallylamine hydrochloride/sodium polystyrene sulfonate/polyallylamine hydrochloride microcapsules (with positively charged inner surface of the microcapsule envelope) is 60–70% of the activity of the soluble enzyme (in experiments where the calcium-carbonate support of the composite spherulites is dissolved with EGTA).

Keywords: encapsulation microcapsules horseradish peroxidase polyelectrolytes catalytic activity biosensors 

Notes

FUNDING

This work was supported by the Committee of Science, Ministry of Education and Science, Republic of Kazakhstan, project AP05134201.

COMPLIANCE WITH ETHICAL STANDARDS

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

REFERENCES

  1. 1.
    G. B. Sukhorukov, D. V. Volodkin, A. M. Günther, et al., J. Materials Chem. 14 (14), 2073 (2004).CrossRefGoogle Scholar
  2. 2.
    D. V. Volodkin, M. Prevot, G. B. Sukhorukov, and A. I. Petrov, Langmuir 20 (8), 3398 (2004).CrossRefGoogle Scholar
  3. 3.
    A. I. Petrov, D. V. Volodkin, and G. B. Sukhorukov, Biotechnol. Progr. 21 (3), 918 (2005).CrossRefGoogle Scholar
  4. 4.
    V. I. Ternovskii, Yu. V. Chernokhvostov, M. G. Fomkina, and M. M. Montrel, Biophysics (Moscow) 52 (5), 825 (2007).Google Scholar
  5. 5.
    M. M. Montrel, V. I. Ternovskii, M. G. Fomkina, and A. I. Petrov, RF Patent No. 2333231 (2008).Google Scholar
  6. 6.
    B. I. Sukhorukov, S. A. Tikhonenko, E. A. Saburova, et al., Biophysics (Moscow) 52 (6), 575 (2007).CrossRefGoogle Scholar
  7. 7.
    G. B. Sukhorukov, M. M. Montrel, A. I. Petrov, et al., Biosens. Bioelectron. 9 (11), 913 (1996).CrossRefGoogle Scholar
  8. 8.
    M. M. Bradford, Anal. Biochem. 72, 248 (1976).CrossRefGoogle Scholar
  9. 9.
    G. V. Presnova, M. Yu. Rubtsova, and A. M. Egorov, Zh. Ross. Khim. O-va im. D. I. Mendeleeva 52 (2), 60 (2008).Google Scholar
  10. 10.
    I. G. Gazaryan, D. M. Khushpulyan and V. I. Tishkov, Usp. Biol. Khim. 46, 306 (2006).Google Scholar
  11. 11.
    L. K. Hanson, C. K. Chang, and M. S. Davis, J. Am. Chem. Soc. 3 (11), 427 (1981).Google Scholar
  12. 12.
    V. V. Rogozhin, Peroxidase As a Component of Antioxidant System in Living Organisms (GIORD, St. Petersburg, 2004) [in Russian].Google Scholar
  13. 13.
    E. A. Saburova, S. A. Tikhonenko, Yu. N. Dybovskaya, and B. I. Sukhorukov, Zh. Fiz. Khim. 82 (3), 554 (2008).Google Scholar
  14. 14.
    A. V. Dubovsky, L. I. Kazakova, D. V. Guzhvina, et al., Al’manakh Klin. Med. 17 (2), 325 (2008).Google Scholar
  15. 15.
    B. I. Sukhorukov, S. A. Tikhonenko, E. A. Saburova, et al., Almanac Clin. Med. 17 (2), 371 (2008).Google Scholar
  16. 16.
    A. V. Dubovsky, E. V. Musin, A. L. Kim, and S. A. Ti-khonenko, Appl. Biochem. Microbiol. 52 (2), 233 (2016).CrossRefGoogle Scholar
  17. 17.
    M. G. Fomkina, R. E. Kazakov, G. M. Minkabirova, and Yu. A. Kim, Ross. Biomed. Zh. 12 (3), 690 (2011).Google Scholar
  18. 18.
    M. G. Fomkina and S. Zh. Ibadullaeva, Nauch. Priborostraenie 28 (3), 36 (2018).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2019

Authors and Affiliations

  • M. G. Fomkina
    • 1
    Email author
  • G. M. Minkabirova
    • 1
  • A. M. Montrel
    • 1
  • S. Zh. Ibadullaeva
    • 2
  1. 1.Institute of Theoretical and Experimental Biophysics, Russian Academy of SciencesPushchinoRussia
  2. 2.Korkyt Ata Kyzylorda State UniversityKyzylordaKazakhstan

Personalised recommendations