Advertisement

Biophysics

, Volume 63, Issue 5, pp 700–705 | Cite as

The Effect of Sodium Selenite on the Expression of Genes of Endoplasmic Reticulum-Resident Selenoproteins in Human Fibrosarcoma Cells

  • E. G. VarlamovaEmail author
  • M. V. Goltyaev
MOLECULAR BIOPHYSICS
  • 6 Downloads

Abstract—Sodium selenite, which is one of the most common selenium compounds, is considered a potential anticancer agent that can decrease cell viability; this compound is present in many types of malignant cells. Oxidative stress contributes to malignant transformation, in particular, by inducing prolonged endoplasmic reticulum stress due to a dramatic increase in free-radical levels. Selenoproteins are oxidoreductases that exhibit antioxidant activity due to the presence of selenium; thus, the need occurs to investigate the role of selenoproteins in the regulation of carcinogenic processes, with a focus on selenoproteins associated with the endoplasmic reticulum, which is an organelle with a high level of redox activity. Almost one-third of the currently known human selenoproteins are located in the endoplasmic reticulum; some of these have been shown to participate in the regulation of processes associated with stress of the endoplasmic reticulum in different types of tumor cells. In this work, changes in the expression patterns of endoplasmic reticulum-resident selenoprotein genes, as well as of key genes involved in the regulation of endoplasmic reticulum stress, were studied in human fibrosarcoma cells exposed to sodium selenite.

Keywords: sodium selenite selenoproteins human fibrosarcoma endoplasmic reticulum stress 

Notes

ACKNOWLEDGMENTS

This work was supported by the Russian Foundation for Basic Research (projects nos. 17-04-00356 and 18-34-00118 mol_a) and a grant from the President of the Russian Federation for young scientists and post-graduate students (SP-2059.2016.4).

REFERENCES

  1. 1.
    C. Lavoie and J. Paiement, Histochem. Cell Biol. 129, 117 (2010).CrossRefGoogle Scholar
  2. 2.
    K. Powell and M. Latterich, Traffic 1, 689 (2000).CrossRefGoogle Scholar
  3. 3.
    G. Voeltz, M. Rolls, and T. Rapoport, EMBO Rep. 3, 944 (2002).CrossRefGoogle Scholar
  4. 4.
    C. Hwang, A. J. Sinskey, and H. F. Lodish, Science 257, (1992).Google Scholar
  5. 5.
    C. M. Haynes, E. A. Titus, and A. A. Cooper, Mol. Cell 15, 767 (2004).CrossRefGoogle Scholar
  6. 6.
    M. Kitamura and N. Hiramatsu, Biometals 23, 941 (2010).CrossRefGoogle Scholar
  7. 7.
    B. J. Lee, M. Rajagonpalan, Y. S. Kim, et al, Mol. Cell. Biol. 10, 1940 (1990).CrossRefGoogle Scholar
  8. 8.
    C. Liu, H. Liu, Y. Li, et al., Mol. Carcinog. 51, 303 (2012).CrossRefGoogle Scholar
  9. 9.
    C. M. Weekley, G. Jeong, M. E. Tierney, et al., J. Biol. Inorg. Chem. 19, 813 (2014).CrossRefGoogle Scholar
  10. 10.
    R. R. Ramoutar and J. L. Brumaghim, Cell. Biochem. Biophys. 58, 1 (2010).CrossRefGoogle Scholar
  11. 11.
    K. Zu, T. Bihani, A. Lin, et al., Oncogene 25, 546 (2006).CrossRefGoogle Scholar
  12. 12.
    H. Puthalakath, L. A. O’Reilly, P. Gunn, et al., Cell 129, 1337 (2007).CrossRefGoogle Scholar
  13. 13.
    S. C. Cazanave, N. A. Elmi, Y. Akazawa, et al., Am. J. Physiol. Gastrointest. Liver Physiol. 299, G236 (2010).CrossRefGoogle Scholar
  14. 14.
    E. G. Varlamova, M. V. Goltyaev, V. I. Novoselov, and E. E. Fesenko, Dokl. Biochem. Biophys. 476 (1), 320 (2017).CrossRefGoogle Scholar
  15. 15.
    K. D. McCullough, J. L. Martindale, L. O. Klotz, et al., Mol. Cell. Biol. 21, 1249 (2001).CrossRefGoogle Scholar
  16. 16.
    A. L. Anding, J. S. Chapman, D. W. Barnett, et al., Cancer Res. 67, 6270 (2007).CrossRefGoogle Scholar
  17. 17.
    R. V. Rao, S. Castro-Obregon, H. Frankowski, et al., J. Biol. Chem. 277, 21836 (2002).CrossRefGoogle Scholar
  18. 18.
    N. Morishima, K. Nakanishi, H. Takenouchi, et al., J. Biol. Chem. 277, 34287 (2002).CrossRefGoogle Scholar
  19. 19.
    E. Szegezdi, S. E. Logue, A. M. Gorman, and A. Samali, EMBO Rep. 7 (9), 880 (2006).CrossRefGoogle Scholar
  20. 20.
    M. Kitamura, Am. J. Physiol. Renal Physiol. 295 (2), F323 (2008).CrossRefGoogle Scholar
  21. 21.
    R. Inagi, Nephron. Exp. Nephrol. 112 (1), e1 (2009).CrossRefGoogle Scholar
  22. 22.
    J. D. Malhotra and R. J. Kaufman, Antioxid. Redox Signal. 9, 2277 (2007).CrossRefGoogle Scholar
  23. 23.
    D. Ron and P. Walter, Nat. Rev. Mol. Cell. Biol. 8, 519 (2007).CrossRefGoogle Scholar
  24. 24.
    K. Zhang and D. J. Kaufman, Methods Enzymol. 442, 395 (2008).CrossRefGoogle Scholar
  25. 25.
    J. G. Dickhout and J. C. Krepinsky, Antioxid. Redox Signal. 11 (9), 2341 (2009).CrossRefGoogle Scholar
  26. 26.
    H. Puthalakath, L. A. O’Reilly, P. Gunn, et al., Cell 129, 1337 (2007).CrossRefGoogle Scholar
  27. 27.
    Y. Ye, Y. Shibata, C. Yun, D. Ron, and T. A. Rapoport, Nature 429, 841 (2004).ADSCrossRefGoogle Scholar
  28. 28.
    Y. Oda, T. Okada, H. Yoshida, et al., J. Cell. Biol. 172, 383 (2006).CrossRefGoogle Scholar
  29. 29.
    B. N. Lilley and H. L. Ploegh, Proc. Natl. Acad. Sci. U. S. A. 102, 14296 (2005).ADSCrossRefGoogle Scholar
  30. 30.
    Y. Ye, Y. Shibata, M. Kikkert, et al., Proc. Natl. Acad. Sci. U. S. A. 102, 14132 (2005).ADSCrossRefGoogle Scholar
  31. 31.
    V. A. Shchedrina, R. A. Everley, Y. Zhang, et al., J. Biol. Chem. 286, 42937 (2011).CrossRefGoogle Scholar
  32. 32.
    V. M. Labunskyy, M. H. Yoo, D. L. Hatfield, and V. N. Gladyshev, Biochemistry 48, 8458 (2009).CrossRefGoogle Scholar
  33. 33.
    S. B. Baylin, J. G. Herman, J. R. Graff, et al., Adv. Cancer Res. 72, 141 (1998).CrossRefGoogle Scholar
  34. 34.
    Z. R. Stoytcheva and M. J. Berry, Biochim. Biophys. Acta 1790, 1429 (2009).CrossRefGoogle Scholar
  35. 35.
    S. Arbogast and A. Ferreiro, Antioxid. Redox Signal. 12, 893 (2010).CrossRefGoogle Scholar
  36. 36.
    M. W. Pitts and P. R. Hoffmann, Cell Calcium 70, 76 (2017). doi 10.1016/j.ceca.2017.05.001CrossRefGoogle Scholar
  37. 37.
    C. Curcio, M. M. Baqui, D. Salvatore, et al., J. Biol. Chem. 276, 30183 (2001).CrossRefGoogle Scholar
  38. 38.
    R. A. Drigo, T. L. Fonseca, M. Castillo, et al., Mol. Endocrinol. 25, 2065 (2011).CrossRefGoogle Scholar
  39. 39.
    E. G. Varlamova, M. V. Goltyaev, and E. E. Fesenko, Dokl. Biochem. Biophys. 468 (1), 203 (2016).CrossRefGoogle Scholar
  40. 40.
    E. G. Varlamova and I. V. Cheremushkina, J. Trace Elem. Med. Biol. 39, 76 (2017).CrossRefGoogle Scholar
  41. 41.
    Q. Wang, J. Huang, H. Zhang, et al., Biol. Trace Elem. Res. 176, 407 (2017).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  1. 1.Institute of Cell Biophysics, Russian Academy of SciencesPushchinoRussia

Personalised recommendations