Advertisement

Biophysics

, Volume 63, Issue 5, pp 706–712 | Cite as

Microwave-Induced Structural Changes in Bacteriorhodopsin: Studies by Optical and Fourier Transform Infrared Difference Spectroscopy

  • E. L. TerpugovEmail author
  • O. V. Degtyareva
  • E. E. Fesenko
CELL BIOPHYSICS

Abstract—Using optical and Fourier transform infrared (FTIR) difference spectroscopy, microwave radiation was found to affect the bacteriorhodopsin (BR) structure in films at a 30% relative humidity. This study is the first to demonstrate that a transition from the dark-adapted basal state BR560 to a state similar to the light-adapted state BR568, which is a mixture of BR568 and other isomeric forms, occurs in the absence of external photoexcitation on exposure to microwave radiation with a frequency range of 8 ≤ f ≤ 18 GHz and an intensity lower than 10 mW/cm2. The initial response of dark-adapted BR to microwave radiation included collective motion of a large portion of protein atoms, producing relatively strong signals in the regions 3700–3300, 2400–2300, and 800–600 cm–1 of the FTIR difference spectrum. Relatively weak amplitude responses were detected in the frequency range characteristics of the retinal chromophore and amide bands (Amide I and Amide II). The effects reflected changes in the retinal chromophore structure and local changes in the chromophore microenvironment.

Keywords: bacteriorhodopsin dark–light adaptation optical spectroscopy FTIR difference spectroscopy microwave radiation biological effect 

Notes

REFERENCES

  1. 1.
    R. H. Lozier, R. A. Bogomolni, and W. Stoeckenius, Biophys. J. 15 (9), 955 (1975).ADSCrossRefGoogle Scholar
  2. 2.
    W. Stoeckenius, R. H. Lozier, and R. A. Bogomolni, Biochim. Biophys. Acta 505, 215 (1979).CrossRefGoogle Scholar
  3. 3.
    L. A. Drachev, A. D. Kaulen, and V. P. Skulachev, FEBS Lett. 87 (1), 161 (1978).CrossRefGoogle Scholar
  4. 4.
    S. P. Balashov and F. F. Litvin, Biofizika 26, 557 (1981).Google Scholar
  5. 5.
    S. P. Balashov, Isr. J. Chem. 35, 415 (1995).CrossRefGoogle Scholar
  6. 6.
    B. M. Becher and J. Y. Cassim, Prep. Biochem. 5 (2), 161 (1975).Google Scholar
  7. 7.
    T. Kouyma, R. A. Bogomolni, and W. Stoeckenius, Biophys. J. 48 (2), 201 (1985).CrossRefGoogle Scholar
  8. 8.
    P. Scherrer, M. K. Mathew, W. Sperling, et al., Biochemistry 28 (2), 829 (1989).CrossRefGoogle Scholar
  9. 9.
    G. S. Harbison, S. O. Smith, J. A. Pardoen, et al., Proc. Natl. Acad. Sci U. S. A. 81 (6) 1706 (1984).ADSCrossRefGoogle Scholar
  10. 10.
    D. L. Chen, G. Y. Wang, B. Xu, et al., J. Photochem. Photobiol. B 66 (3), 188 (2002).CrossRefGoogle Scholar
  11. 11.
    A. Maeda, T. Iwasa, and T. Yoshizawa, Biochemistry 19 (16), 3825 (1980).CrossRefGoogle Scholar
  12. 12.
    P. C. Mowery, R. H. Lozier, Q. Chae, et al., Biochemistry 18 (19) 4100 (1979).CrossRefGoogle Scholar
  13. 13.
    N. A. Dencher, K. D. Kohl, and M. P. Heyn, Biochemistry 22 (6), 1323 (1983).CrossRefGoogle Scholar
  14. 14.
    L. S. Brown and S. K. Chamorovsky, Photochem. Photobiol. B: Biol. 18 (2–3), 123 (1993).Google Scholar
  15. 15.
    P. Hildebrandt and M. Stockburger, Biochemistry 23, 5539 (1984).CrossRefGoogle Scholar
  16. 16.
    M. Tsuda and T. G. Ebrey, Biophys. J. 30 (1), 149 (1980).ADSCrossRefGoogle Scholar
  17. 17.
    A. Schulte and L. Bradley, Biophys. J. 69 (4), 1554 (1995).ADSCrossRefGoogle Scholar
  18. 18.
    K. Bryl and K. Yoshihara, Eur. Biophys. J. 31 (7), 539 (2002).CrossRefGoogle Scholar
  19. 19.
    R. R. Birge, D. S. K. Govender, K. Can Izgi, et al., J. Phys. Chem. 100 (23), 9990 (1996).CrossRefGoogle Scholar
  20. 20.
    R. F. Cleveland and J. L. Ubase, OET Bull. 56, 1 (1999).Google Scholar
  21. 21.
    H. Bohr and J. Bohr, Phys. Rev. 61 (4) 4310 (2000).ADSGoogle Scholar
  22. 22.
    E. E. Fesenko and A. Yu. Gluvstein, FEBS Lett. 367, 53 (1995).CrossRefGoogle Scholar
  23. 23.
    R. K. Adair, Bioelectromagnetics 24 (1) 39 (2003).CrossRefGoogle Scholar
  24. 24.
    E. E. Fesenko, V. I. Geletyuk, V. N. Kazachenko, et al., FEBS Lett. 366, 49 (1995).CrossRefGoogle Scholar
  25. 25.
    I. Y. Belyaev, Y. D. Alipov, and A. Y. Matronchik, Biolectomagnetics 19 (5) 300 (1998).CrossRefGoogle Scholar
  26. 26.
    A. B. Gapeev, V. S. Iakushina, N. K. Chemeris, et al., Biofizika 41 (1), 205 (1996).Google Scholar
  27. 27.
    A. B. Gapeev, V. S. Iakushina, N. K. Chemeris, et al., Biofizika 42 (5), 1125 (1997).Google Scholar
  28. 28.
    R. Goodman and A. S. Henderson, Biolelectromagnetics 1 (7), 23 (1986).CrossRefGoogle Scholar
  29. 29.
    D. Oesterhelt and W. Stoechenius, Methods Ensymol. 31, 667 (1974).CrossRefGoogle Scholar
  30. 30.
    M. A. Berliner, Moisture Measurement (Energiya, Moscow,1973) [in Russian].Google Scholar
  31. 31.
    E. L. Terpugov, Yu. A. Lazarev, and L. N. Chekuaeva, Mol. Biol. (Moscow) 16 (4), 8130 (1982).Google Scholar
  32. 32.
    A. A. Balashov, V. A. Vagin, A. V. Viskovatich, et al., Proc. SPIE 1575, 182 (1991).ADSCrossRefGoogle Scholar
  33. 33.
    P. R. Griffiths and J. A. de Haseth, Fourier Transform Infrared Spectroscopy (Wiley, New York, 1986).Google Scholar
  34. 34.
    A. Maeda, T. Iwasa, and T. Yoshizawa, J. Biochem. 82 (6), 1599 (1977).CrossRefGoogle Scholar
  35. 35.
    K. Gerwert and F. Siebert, EMBO J. 5 (4), 805 (1986).CrossRefGoogle Scholar
  36. 36.
    I. Logunov and K. Schulten, J. Am. Chem. Soc. 118, 9727 (1996).CrossRefGoogle Scholar
  37. 37.
    I. Logunov, W. Humphrey, K. Schulten, et al., Biophys. J. 68 (4), 1270 (1995).CrossRefGoogle Scholar
  38. 38.
    R. A. Mathies, S. W. Lin, J. B. Ames, et al., Annu. Rev. Biophys. Biophys. Chem. 20, 491 (1991).CrossRefGoogle Scholar
  39. 39.
    R. R. Birge, Biochim. Biophys. Acta–Bioenergetics 1016 (3), 293 (1990).Google Scholar
  40. 40.
    D. Oesterhelt, J. Tittor, and E. Bamberg, J. Bioenerg. Biomembr. 24, 181 (1992).CrossRefGoogle Scholar
  41. 41.
    F. Gai, K. C. Hasson, J. C. McDonald, et al., Science 279 (5358), 1886 (1998).ADSCrossRefGoogle Scholar
  42. 42.
    A. Maeda, Isr. J. Chem. 35, 387 (1995).CrossRefGoogle Scholar
  43. 43.
    L. J. Bellamy, The Infra-Red Spectra of Complex Molecules, 3rd ed. (Halsted Press, New York, 1975).CrossRefGoogle Scholar
  44. 44.
    A. Maeda, Biochemistry (Moscow) 66 (11), 1256 (2001).CrossRefGoogle Scholar
  45. 45.
    K. J. Rothshild, J. Bioenerg. Biomembr. 24 (2) 147 (1992).CrossRefGoogle Scholar
  46. 46.
    A. K. Dioumaev, Biochemistry (Moscow) 66 (11), 1269 (2001).CrossRefGoogle Scholar
  47. 47.
    S. O. Smith, J. Lugtenburg, and R. A. Mathies, J. Membr. Biol. 85 (2), 95 (1985).CrossRefGoogle Scholar
  48. 48.
    S. O. Smith, A. B. Myers, J. A. Pardoen, et al., Proc. Natl. Acad. Sci. U. S. A. 81 (7) 2055 (1984).ADSCrossRefGoogle Scholar
  49. 49.
    S. O. Smith, J. A. Pardoen, J. Lugtenburg, et al., J. Phys. Chem. 91 (4), 804 (1987).CrossRefGoogle Scholar
  50. 50.
    S. Y. Venyaminov and N. N. Kalnin, Biopolymers 30 (13–14), 1243 (1990).Google Scholar
  51. 51.
    Yu. N. Chirgadze and N. A. Nevskaya, Biopolymers 15 (4), 637 (1976).CrossRefGoogle Scholar
  52. 52.
    Y. N. Chirgadze, O. V. Fedorov, and N. P. Trushina, Biopolymers 14 (4), 679 (1975).CrossRefGoogle Scholar
  53. 53.
    B. Nie, J. Stutzman, and A. Xie, Biophys. J. 88 (4), 2833 (2005).CrossRefGoogle Scholar
  54. 54.
    S. Krimm and A. M. Dwivedi, Science 216 (4544), 407 (1982).ADSCrossRefGoogle Scholar
  55. 55.
    T. Miyazawa, J. Am. Chem. Soc. 83 (3), 712 (1961).CrossRefGoogle Scholar
  56. 56.
    J. Bandekar, Biochim. Biophys. Acta 1120 (2) 123 (1992)CrossRefGoogle Scholar
  57. 57.
    P. Hamm, M. H. Lim, and R. M. Hochstrasser, J. Phys. Chem. B 102 (31), 6123 (1998).CrossRefGoogle Scholar
  58. 58.
    H. Kandori, Biochim. Biophys. Acta 1460 (1), 177 (2000).CrossRefGoogle Scholar
  59. 59.
    H. Kandori, M. Shibata, and Y. Furutani, Photochem. Photobiol. Sci. 4 (9), 661 (2005).CrossRefGoogle Scholar
  60. 60.
    G. Herzberg, Molecular Spectra and Molecular Structure, Part 2: Infrared and Raman Spectra of Polyatomic Molecules (Van Nostrand Comp., New York, 1945).Google Scholar
  61. 61.
    M. Wolpert and P. Hellwig, Spectochim. Acta A 64 (4), 987 (2006).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • E. L. Terpugov
    • 1
  • O. V. Degtyareva
    • 1
  • E. E. Fesenko
    • 1
  1. 1.Institute of Cell Biophysics, Russian Academy of SciencesPushchinoRussia

Personalised recommendations