Advertisement

Biophysics

, Volume 63, Issue 5, pp 769–778 | Cite as

The Temperature Sensitivity of the Processes of the Initial Stage of Microbial Decomposition of Woody Litter in Forest Soil

  • E. V. Menko
  • E. N. Tikhonova
  • R. V. Ulanova
  • M. V. Sukhacheva
  • T. V. Kuznetsova
  • S. N. Udaltsov
  • I. K. Kravchenko
COMPLEX SYSTEMS BIOPHYSICS

Abstract—Soil organic matter of forest ecosystems is characterized by high sensitivity to increased temperatures, which makes soil organic matter more vulnerable under the conditions of global warming. In this study, evaluation of the effects of different components of woody litter (leaves and small branches of aspen) on the dynamics of the activity and quantitative characteristics of microbial communities of soils under the conditions simulating climate warming was carried out. In our experiment we used samples of gray forest soil from the forest biocenosis of the Moscow area, which is typical of the European part of Russia. Incubation of soil samples to which crushed leaves and branches were added (0.5 wt %) was carried out at constant temperatures of 5, 15, and 25°C for 28 days. The dynamics of CO2 emission, organic carbon content, microbial biomass, as well as the number of the ribosomal genes of bacteria, archaea, and micromycetes, were evaluated. The optimal temperature for plant litter decomposition was 15°C; a decrease or increase in the temperature resulted in a decrease in the intensity of the litter decomposition process. Addition of plant residues in the temperature range of 5–15°C resulted in a significant increase in the temperature sensitivity of the soil-respiration process and the temperature coefficient increased from 1.75 to 3.44–3.54. In the temperature range of 15–25°C an inverse correlation was observed. At high temperatures addition of plant residues stimulated decomposition of soil organic matter. These results contribute to the understanding of the dynamics of soil carbon and can be used in predictive models of the processes of plant-litter decomposition and the dynamics of soil organic matter in forest biocenoses in Eurasia under the conditions of climate change.

Keywords: temperature sensitivity woody litter microorganisms global climate change bacteria micromycetes 

Notes

ACKNOWLEDGMENTS

This work was supported by the Russian Foundation for Basic Research (RFFI-NNSF project no. 18-54-53004).

REFERENCES

  1. 1.
    N. I. Bazilevich and L. E. Rodin, Organic Matter Dynamics and Biological Turnover of Nitrogen and Ash Elements in Basic Types of Global Vegetation (Nauka, Moscow, 1965) [in Russian].Google Scholar
  2. 2.
    K. A. Lukomskaya, Microbiology with Fundamentals of Virology (Nauka, Moscow, 1987) [in Russian].Google Scholar
  3. 3.
    D. G. Zvyagintsev, Soil and Microorganisms (Moscow State Univ., Moscow 1987) [in Russian].Google Scholar
  4. 4.
    J. S. Clein and J. P. Schimel, Soil Biol. Biochem. 27, 1231 (1995).CrossRefGoogle Scholar
  5. 5.
    F. L. Bunnell, D. E. N. Tait, P. W. Flanagan, and K. Van Cleve, Soil Biol. Biochem. 9, 33 (1977).CrossRefGoogle Scholar
  6. 6.
    L. A. Grishina, M. I. Koptsik, and M. I. Makarov, Transformation of Soil Organic Matter (Moscow State Univ., Moscow, 1990) [in Russian].Google Scholar
  7. 7.
    L. S. Pesochina and T. P. Malygina, Micromorphological Features of Plant Debris Transformation under Different Hydrothermal Conditions (Soil. Sci. Inst., Moscow, 1989) [in Russian].Google Scholar
  8. 8.
    W. H. Schlesinger, Soil Organic Matter: A Source of Atmospheric CO 2 , Ed. by G. M. Woodwell (London, 1984).Google Scholar
  9. 9.
    N. N. Naplekova, Aerobic Decomposition of Cellulose by Microorganisms in Soils of Western Siberia (Nauka, Novosibirsk, 1974) [in Russian].Google Scholar
  10. 10.
    B. Berg and C. McClaugherty, Plant Litter: Decomposition, Humus Formation, Carbon Sequestration (Springer-Verlag, Berlin, 2008).CrossRefGoogle Scholar
  11. 11.
    A. A. Rakhleeva, T. A. Semenova, B. R. Striganova, and V. A. Terekhova, Euras. Soil Sci. 44 (1), 38 (2011).Google Scholar
  12. 12.
    B. Berg and R. Laskowski, Adv. Ecol. Res. 38, 1 (2006).Google Scholar
  13. 13.
    E. A. Davidson, S. C. Hart, and M. K. Firestone, Ecology 73 (4), 1148 (1992).CrossRefGoogle Scholar
  14. 14.
    N. Fierer, J. M. Craine, K. McLauchghan, and J. P. Schimel, Ecology 86, 320 (2005).CrossRefGoogle Scholar
  15. 15.
    E. Matzner and W. Borken, Eur. J. Soil Sci. 59 (2), 274 (2008).CrossRefGoogle Scholar
  16. 16.
    M. Carlile, S. Watkinson, and G. Gooday, The Fungi, 2nd ed. (Academic, 2001).Google Scholar
  17. 17.
    C. Kramer and G. G. Leixner, Soil Biol. Biochem. 38, 3267 (2006).CrossRefGoogle Scholar
  18. 18.
    M. Pettersson and E. Bafiafith, FEMS Microbiol. Ecol. 45, 13 (2003)CrossRefGoogle Scholar
  19. 19.
    K. Carney, B. Hungate, B. Drake, and J. Megonigal, Proc. Natl. Acad. Sci. U. S. A. 104, 4990 (2007).ADSCrossRefGoogle Scholar
  20. 20.
    K. K. Treseder, Ecol. Lett. 11 (10), 1111 (2008).CrossRefGoogle Scholar
  21. 21.
    P. M. Cox, R. A. Betts, C. D. Jones, et al., Nature 408, 184 (2000).ADSCrossRefGoogle Scholar
  22. 22.
    G. A. Meehl, T. F. Stocker, W. D. Collins, et al., In Climate Change 2007: The Physical Science Basis, Ed. by S. Solomon, D. Qin, M. Manning, (Cambridge University Press, Cambridge, UK; 2007).Google Scholar
  23. 23.
    J. H. Christensen, B. Hewitson, A. Busuioc, et al., In Climate Change 2007: The Physical Science Basis. Ed. by S. Solomon, D. Qin, M. Manning, (Cambridge Univ. Press, Cambridge, UK, 2007).Google Scholar
  24. 24.
    T. R. Filley, T. W. Boutton, J. D. Liao, et al., J. Geophys. Res.–Biogeosci. 113, G03009 (2008).ADSGoogle Scholar
  25. 25.
    M. U. F. Kirschbaum, Soil Biol. Biochem. 38 (9), 2510 (2006).CrossRefGoogle Scholar
  26. 26.
    I. P. Hartley and P. Ineson, Soil Biol. Biochem. 40 (7), 1567 (2008).CrossRefGoogle Scholar
  27. 27.
    V. N. Kudeyarov, G. A. Zavarzin, S. A. Blagodatskii, et al., Carbon Pools and Fluxes in Terrestrial Ecosystems of Russia (Nauka, Moscow, 2007) [in Russian].Google Scholar
  28. 28.
    A. V. Smagin, N. B. Sadovnikova, M. V. Smagina, et al., Modeling the Dynamics of Soil Organic Matter (Moscow State Univ., Moscow, 2001) [in Russian].Google Scholar
  29. 29.
    L. Rustad, T. G. Huntington, and R. D. Boone, Biogeochemistry 48 (1), 1 (2000).CrossRefGoogle Scholar
  30. 30.
    S. Manzoni, S. M. Schaeffer, G. Katul, et al., Soil Biol. Biochem. 73, 69 (2014)CrossRefGoogle Scholar
  31. 31.
    E. E. Schulte, C. Kaufmann, and B. J. Peter, Commun. Soil Sci. Plant Anal. 22, 159 (1991).CrossRefGoogle Scholar
  32. 32.
    D. S. Orlov, O. N. Biryukova, and N. I. Sukhanova, Organic Matter in Soils of the Russian Federation (Nauka, Moscow, 1996) [in Russian].Google Scholar
  33. 33.
    M. Semenov, E. Blagodatskaya, A. Stepanov, and Y. Kuzyakov, J. Arid Environ. 150, 54 (2018).ADSCrossRefGoogle Scholar
  34. 34.
    E. E. Andronov, S. N. Petrova, A. G. Pinaev, et al., Euras. Soil Sci. 45 (2), 147 (2012).Google Scholar
  35. 35.
    S. Thiessen, G. Gleixner, T. Wutzler, and M. Reichstein, Soil Biol. Biochem. 57, 739 (2013).CrossRefGoogle Scholar
  36. 36.
    Z. A. Malik, R. Pandey, and A. B. Bhatt, J. Mountain Sci. 13, 69 (2016).Google Scholar
  37. 37.
    J. C. C. Yuste, D. D. Baldocchi, A. Gershenson, et al., Glob. Change Biol. 13, 2018 (2007).ADSCrossRefGoogle Scholar
  38. 38.
    A. A. Larionova, A. N. Maltseva, V. O. Lopes de Gerenyu, et al., Euras. Soil Sci. 50 (4), 422 (2017).Google Scholar
  39. 39.
    E.-A. Kaiser and O. Heinemeyer, Soil Biol. Biochem. 25 (12), 1649 (1993).CrossRefGoogle Scholar
  40. 40.
    V. M. Semenov, L. A. Ivannikova, and A. S. Tulina, Agrokhimiya 10, 77 (2009).Google Scholar
  41. 41.
    M. S. Strickland and J. Rousk, Soil Biol. Biochem. 42, 1385 (2010).CrossRefGoogle Scholar
  42. 42.
    M. G. A. Van der Heijden, R. D. Bardgett, and N. M. Van Straalen, Ecol. Lett. 11, 296 (2008).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • E. V. Menko
    • 1
  • E. N. Tikhonova
    • 1
  • R. V. Ulanova
    • 1
  • M. V. Sukhacheva
    • 2
  • T. V. Kuznetsova
    • 3
  • S. N. Udaltsov
    • 3
  • I. K. Kravchenko
    • 1
  1. 1.Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of SciencesMoscowRussia
  2. 2.Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of SciencesMoscowRussia
  3. 3.Institute of Physicochemical and Biological Problems in Soil Science, Russian Academy of SciencesMoscow oblast, Pushchino, Russia

Personalised recommendations