, Volume 63, Issue 5, pp 713–717 | Cite as

Conformational Changes in Chloroplast F1-ATPase Caused by Thiol-Dependent Activation and MgADP-Dependent Inactivation

  • A. N. MalyanEmail author
  • V. K. Opanasenko

Abstract—The state of tyrosine residues of the chloroplast coupling factor CF1 was studied by spectrophotometric titration. It was shown that some tyrosine residues of CF1 underwent deprotonation at pH values of the medium much lower than the pK of free tyrosine. The number of such residues depends on both the conformational state of the enzyme and the composition of the medium. They are abundant in CF1 with the γ-subunit that contains a disulfide bridge. Bridge reduction leads to a decrease of their number and, accordingly, an increase in the number of residues that undergo deprotonation at a pH higher than the tyrosine pK. The minimum number of residues that dissociated within the 6.0–9.0 pH range was observed in the reaction mixture containing Mg2+ or MgADP. It is assumed that the changes in pK values for tyrosine residues result from the presence or absence of positively charged amino-acid residues in their neighborhood, which is indicative of alterations in the tertiary structure of the enzyme. Deprotonation of a considerable part of tyrosine residues in the presence of Mg2+ or MgADP occurs within an abnormally narrow pH range and demonstrates the cooperative transition to the new conformational state of the enzyme. Comparison of the data obtained with our previous kinetic data indicates that the titration characteristics and the respective structures of CF1-ATPase observed in the presence of Mg2+ or MgADP result from reversible inactivation caused by MgADP binding to one catalytic site and one noncatalytic site.

Keywords: chloroplast coupling factor CF1 thiol-dependent activation MgADP-dependent inactivation 



  1. 1.
    H. Noji, R. Yasuda, M. Yoshida, and K. Kinosita, Nature 386, 299 (1997).ADSCrossRefGoogle Scholar
  2. 2.
    M. Futai, M. Nakanishi-Matsui, H. Okamoto, et al. Biochim. Biophys. Acta 1817, 1711 (2012).CrossRefGoogle Scholar
  3. 3.
    Schmidt, V. Beilsten-Edmands, S. Mohammed, and C. V. Robinson, Sci. Rep. 7, 44068 (2017).ADSCrossRefGoogle Scholar
  4. 4.
    A. N. Malyan and O. I. Vitseva, Photosynthetica 24 (4), 613 (1990).Google Scholar
  5. 5.
    J. P. Abrahams, A. G. W. Leslie, R. Lutter and J. E. Walker, Nature 370, 621 (1994).ADSCrossRefGoogle Scholar
  6. 6.
    A. N. Mal’yan, Photosynthetica 15 (4), 474 (1981).Google Scholar
  7. 7.
    A. N. Malyan and W. S. Allison, Biochim. Biophys. Acta 1554, 153 (2002).CrossRefGoogle Scholar
  8. 8.
    A. N. Malyan, Photosynth. Res. 105 (2010).Google Scholar
  9. 9.
    A. N. Malyan and E. A. Akulova, Biokhimiya 43 (7), 1206 (1978).Google Scholar
  10. 10.
    A. N. Malyan, Biochim. Biophys. Acta 1607, 161 (2003).CrossRefGoogle Scholar
  11. 11.
    N. Nelson, Biochim. Biophys. Acta 456, 314 (1976).CrossRefGoogle Scholar
  12. 12.
    J. Schumann, M. L. Richter, and R. E. McCarty, J. Biol. Chem. 260, 11817 (1985).Google Scholar
  13. 13.
    K. E. Hightower and R. E. McCarty, Biochemistry 35, 4846 (1996).CrossRefGoogle Scholar
  14. 14.
    A. N. Malyan, Photosynth. Res. 61, 1 (1999).CrossRefGoogle Scholar
  15. 15.
    O. N. Gubanova, V. K. Opanasenko, and A. N. Malyan, Biokhimiya 59 (3), 410 (1994).Google Scholar
  16. 16.
    S. Lien, R. Berzborn, and E. Racker, J. Biol. Chem. 247, 3520 (1972).Google Scholar
  17. 17.
    A. Binder, A. Jagendorf, and E. Ngo, J. Biol. Chem. 253, 3094 (1978).Google Scholar
  18. 18.
    M. M. Bradford, Anal. Biochem. 72, 248 (1976).CrossRefGoogle Scholar
  19. 19.
    A. N. Malyan and O. I. Vitseva, Biochemistry (Moscow) 66 (4), 505 (2001).CrossRefGoogle Scholar
  20. 20.
    F. L. Kalinin, V P. Lobov, and V. A. Zhidkov, Handbook of Biochemistry (Naukova Dumka, Kiev, 1971) [in Russian].Google Scholar
  21. 21.
    A. N. Malyan and O. I. Vitseva, Biokhimiya 48 (5), 718 (1983).Google Scholar
  22. 22.
    S. Bernhard, The Structure and Function of Enzymes (W. A. Benjamin, Inc., New York 1968; Mir, Moscow, 1971).Google Scholar
  23. 23.
    F. Buchert, H. Konno, and T. Hisabori, Biochim. Biophys. Acta 1847, 441 (2015).CrossRefGoogle Scholar
  24. 24.
    Z. Xue, and P. D. Boyer, Eur. J. Biochem. 179, 677 (1989).CrossRefGoogle Scholar
  25. 25.
    R. I. Feldman, and P. D. Boyer, J. Biol. Chem. 260 (24), 13088 (1985).Google Scholar
  26. 26.
    A. N. Malyan, Usp. Biol. Khim. 53, 297 (2013).Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  1. 1.Institute of Basic Biological Problems, Russian Academy of SciencesPushchinoRussia

Personalised recommendations