Advertisement

Biophysics

, Volume 63, Issue 5, pp 798–804 | Cite as

Continuous In Vivo Monitoring of the Oxygen Concentration in Tissues

  • S. N. LetutaEmail author
  • A. T. Ishemgulov
  • U. G. Letuta
  • S. N. Pashkevich
COMPLEX SYSTEMS BIOPHYSICS
  • 7 Downloads

Abstract—The kinetics of delayed fluorescence and phosphorescence of xanthene dyes in mouse tissues under the pulse-periodic excitation of molecules was studied in vivo and in vitro. The advantages of continuous monitoring of oxygen content in tissues by the kinetics of delayed fluorescence caused by singlet–triplet annihilation of singlet oxygen with triplet excitation of fluorophore are demonstrated. A method is proposed for determining the time of recovery of the concentration of oxygen consumed in tissues in vivo and in vitro during photodynamic processes.

Keywords: singlet oxygen  tissues xanthene dyes delayed luminescence 

Notes

АСKNОWLЕDGMЕNTS

The work was supported by the Ministry of Science and Higher Education of the Russian Federation, project no. 3.6358.2017/BCh, and the Russian Foundation for Basic Research, project no. 17-32-50051.

REFERENCES

  1. 1.
    J. Dings, J. Meixensberger, A. Jäger, and K. Roosen, Neurosurgery 43 (5), 1082 (1998).CrossRefGoogle Scholar
  2. 2.
    I. A. Shusygin, Respiration Monitoring: Pulse Oximetry, Capnography, Oximetery) (BINOM, Moscow, 2000) [in Russian].Google Scholar
  3. 3.
    J. R. Bacon and J. N. Demas, Anal. Chem. 59 (23), 2780 (1987).CrossRefGoogle Scholar
  4. 4.
    D. R. Collingridge, W. K. Young, B. Vojnovic, et al., Radiat. Res. 147 (3), 329 (1997).ADSCrossRefGoogle Scholar
  5. 5.
    W. K. Young, B. Vojnovica, and P. Wardman, Br. J. Cancer 74 (Suppl. XXVII), S256 (1996).Google Scholar
  6. 6.
    A. A. Krasnovsky, Jr., Biophysics (Moscow) 49 (2), 289 (2004).Google Scholar
  7. 7.
    T. Nyokong and V. Ahsen, Photosensitizers in Medicine, Environment, and Security (Springer, Dordrecht, 2012).CrossRefGoogle Scholar
  8. 8.
    Y. Shen, H. Lin, Z. Huang, et al., Laser Phys. Lett. 8, 232 (2011).ADSCrossRefGoogle Scholar
  9. 9.
    E. G. Mik, T. Johannes, C. J. Zuurbier, et al., Biophys. J. 95, 3977 (2008).ADSCrossRefGoogle Scholar
  10. 10.
    S. N. Letuta, A. F. Kuvandykova, and S. N. Pashkevich, J. Anal. Oncology 1 (1), 107 (2012).Google Scholar
  11. 11.
    C. A. Parker, Photoluminescence of Solutions: With Applications to Photochemistry and Analytical Chemistry (Elsevier, Amsterdam, 1968; Mir, Moscow, 1972).Google Scholar
  12. 12.
    S. N. Letuta, V. S. Maryakhina, S. N. Pashkevich, and R. R. Rakhmatullin, Opt. Spectrosc. 110 (1), 67 (2011).ADSCrossRefGoogle Scholar
  13. 13.
    K. Jahn, V. Buschmann, and C. Hille, Sci. Rep. 5, 14334 (2015).ADSCrossRefGoogle Scholar
  14. 14.
    I. S. Vinklarek, M. Scholz, R. Dědic, and J. Hala, Photochem. Photobiol. Sci. 16, 507 (2017).CrossRefGoogle Scholar
  15. 15.
    M. Scholz, A.L. Biehl, R. Dědic, and J. Hála, Photochem. Photobiol. Sci. 14, 700 (2015).CrossRefGoogle Scholar
  16. 16.
    M. Scholz and R. Dědic, in Singlet Oxygen: Applications in Biosciences and Nanosciences, Ed. by S. Nonell and C. Flors (Roy. Soc. of Chemistry, London, 2016), Vol. 2, pp. 63–81.Google Scholar
  17. 17.
    M. G. Kucherenko, M. P. Melnik, G. A. Ketzle, and S. N. Letuta, Opt. Sprektrosk. 78 (4), 649 (1995).Google Scholar
  18. 18.
    A. A. Krasnovsky Jr., Biochemistry 72 (10), 1065 (2007).Google Scholar
  19. 19.
    S. N. Letuta, A. T. Ishemgulov, S. N. Pashkevich, et al., Vestn. Orenburg. Gos. Univ., 13, 175 (2015).Google Scholar
  20. 20.
    S. N. Letuta, A. F. Kuvandykova, S. N. Pashkevich, and A. M. Saletskii, Russ. J. Phys. Chem. A 87 (9), 1582 (2013).CrossRefGoogle Scholar
  21. 21.
    A. T. Ishemgulov, S. N. Letuta, S. N. Pashkevich, et al., Opt. Spectrosc. 123 (5), 828 (2017).ADSCrossRefGoogle Scholar
  22. 22.
    M. G. Kucherenko, Kinetics of Nonlinear Processes in Condensed Molecular Systems (Orenburg. State Univ., Orenburg, 1997) [in Russian].Google Scholar
  23. 23.
    E. V. Moiseeva, Original Approaches to Test Anti-breast Cancer Drugs in a Novel Set of Mouse Models (Proefschrift Universiteit, Utrecht, 2005).Google Scholar
  24. 24.
    A. Townshend, D. T. Burns, R. Lobinski, et al., Dictionary of Analytical Reagents (CRC Press, 1993).Google Scholar
  25. 25.
    H. S. Soedjak, Anal. Biochem. 220, 142 (1994).CrossRefGoogle Scholar
  26. 26.
    K. K. Rohatgi-Mukherjee and A. K. Mukhopadhyay, Ind. J. Pure Appl. Phys. 14 (6), 481 (1976).Google Scholar
  27. 27.
    S. N. Letuta, S. N. Pashkevich, A. T. Ishemgulov, et al., J. Photochem. Photobiol. B: Biol. 163, 232 (2016).CrossRefGoogle Scholar
  28. 28.
    Y. Hirakawa, Sci. Rep. 5, 17838 (2015).ADSCrossRefGoogle Scholar
  29. 29.
    S. V. Apreleva, D. F. Wilson, and S. A. Vinogradov, Appl. Opt. 45 (33), 8547 (2006).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • S. N. Letuta
    • 1
    Email author
  • A. T. Ishemgulov
    • 1
  • U. G. Letuta
    • 1
  • S. N. Pashkevich
    • 1
  1. 1.Orenburg State UniversityOrenburgRussia

Personalised recommendations