, Volume 63, Issue 5, pp 669–674 | Cite as

Virtual Screening of Thiol Peroxiredoxin 6 Reducers

  • M. S. KondratyevEmail author
  • E. V. Zakharova

Abstract—Virtual screening of possible thiol reducers for peroxiredoxin 6, which is one of the most important components of the antioxidant system in a number of living organisms, including humans, was performed. The mechanism of functioning of this protein was studied earlier; however, the search for new reducing agents and their study is still important. According to our hypothesis short cysteine-containing peptides, as well as small thiol compounds, can serve as reducing agents. In the present study, interactions of peroxiredoxin 6 with captopril, unithiol, succimer, cystamine, and three cystein-containing peptides, ECECE, KCKCK, and CCCCC, were simulated and analyzed. The most promising molecules for further study were revealed by the methods of molecular modeling and docking. A new atypical binding site for thiol ligands was found on the surface of the peroxiredoxin 6 molecule.

Keywords: peroxiredoxin molecular docking thiol compounds reducer molecular modeling 



  1. 1.
    Y. Manevich, S. I. Feinstein, and A. B. Fisher, Proc. Natl. Acad. Sci. U. S. A. 101, 3780 (2004).ADSCrossRefGoogle Scholar
  2. 2.
    S. G. Rhee, H. Z. Chae, and K. Kim, Free Radic. Biol. Med. 38, 1543 (2005).CrossRefGoogle Scholar
  3. 3.
    Z. A. Wood, E. Schröder, J. R. Harris, and L. B. Poole, Trends Biochem. Sci. 28, 32 (2003).CrossRefGoogle Scholar
  4. 4.
    H. J. Choi, S. W. Kang, C. H. Yang, et al., Nat. Struct. Biol. 5, 400 (1998).CrossRefGoogle Scholar
  5. 5.
    B. Biteau, J. Labarre, and M. B. Toledano, Nature 425, 980 (2003).ADSCrossRefGoogle Scholar
  6. 6.
    S. W. Kang, S. G. Rhee, T. S. Chang, et al., Trends Mol. Med. 11, 571 (2005).CrossRefGoogle Scholar
  7. 7.
    V. I. Novoselov, I. V. Peshenko, S. V. Novoselov, et al., Biophysics (Moscow) 44, 558 (1999).Google Scholar
  8. 8.
    V. I. Novoselov, L. M. Baryshnikova, V. A. Yanin, et al., Dokl. Biochem. Biophys. 393, 326 (2003).CrossRefGoogle Scholar
  9. 9.
    A. B. Fisher, C. Dodia, S. I. Feinstein, and Y. S. Ho, J. Lipid Res. 46, 1248 (2005).CrossRefGoogle Scholar
  10. 10.
    E. Kubo, N. Fatma, Y. Akagi, et al., Am. J. Physiol. Cell Physiol. 294, 842 (2008).CrossRefGoogle Scholar
  11. 11.
    A. Kumin, C. Huber, T. Rulicke, et al., Am. J. Pathol. 169, 1194 (2006).CrossRefGoogle Scholar
  12. 12.
    M. G. Sharapov, S. V. Gudkov, A. E. Gordeeva, et al., Dokl. Biochem. Biophys. 467, 110 (2016).CrossRefGoogle Scholar
  13. 13.
    M. G. Sharapov, V. I. Novoselov, E. E. Fesenko, et al., Free Radic. Res. 51 (2), 148 (2017).CrossRefGoogle Scholar
  14. 14.
    I. Zemtsova and L. Stankevich, Nauka Olimp. Sporte, No. 2, 37 (2015).Google Scholar
  15. 15.
    M. S. Kondrat’ev, A. V. Kabanov, V. M. Komarov, et al., Biophysics (Moscow) 56 (6), 1026 (2011).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  1. 1.Institute of Cell Biophysics, Russian Academy of SciencesPushchinoRussia
  2. 2.Moscow State UniversityMoscowRussia

Personalised recommendations