Advertisement

Biophysics

, Volume 63, Issue 5, pp 820–824 | Cite as

The Reversible Effect of Deuteration on Tissue Fluid and Biopolymers in Normal and Tumor Tissues of Mice

  • A. V. Kosenkov
  • M. V. Gulyaev
  • V. I. LobyshevEmail author
  • G. M. Yusubalieva
  • V. P. Baklaushev
COMPLEX SYSTEMS BIOPHYSICS

Abstract—The deuterium concentration in normal mice and mice inoculated with 4T1 mammary carcinoma has been studied by magnetic resonance imaging (MRI) and 1H and 2H contrast. Mice received deuterium (up to 10%) in drinking water. The reversible effect was observed when mice began to drink ordinary drinking water. The average period that is required to perform hydrogen/deuterium exchange in all parts of the mouse is 2.4 days. Hydrogen/deuterium exchange rates in normal and deuterated mice are not reliably distinguished. The day range for hydrogen/deuterium exchange in biopolymers depends on its localization in the mouse and varies from 8 to 24 days. The nonmonotonic character of the time dependence of the deuterium level was observed after a weekly consumption of drinking water with an increased deuterium content in the tumor. The median survival rate of the inoculated mice that received drinking water with an increased content of deuterium was 4 days longer than that in the control group.

Keywords: heavy water malignant tumor 4T1 mammary carcinoma survival MRI and 1Н and 2Н contrast deuterium exchange 

Notes

REFERENCES

  1. 1.
    V. I. Lobyshev and L. P Kalinichenko, Isotopic Effects of D 2 O in Biological Systems (Nauka, Moscow, 1974) [in Russian].Google Scholar
  2. 2.
    J. A. Laissue, E. Bally, D. D. Joel, et al., Radiat. Res. 96, 59 (1983).ADSCrossRefGoogle Scholar
  3. 3.
    J. A. Laissue, H. J. Altermatt, E. Bally, and J.-O. Gebbers, Exp. Hematol. 15, 177, (1987).Google Scholar
  4. 4.
    J. A. Laissue and R. D. Stoner, Virchows Arch. A 383, 149, (1979).CrossRefGoogle Scholar
  5. 5.
    H. J. Altermatt, J.-O. Gebbers, and J. A. Laissue, Cancer 62, 463, (1988).Google Scholar
  6. 6.
    J. Hartmann, Y. Bader, Zs. Horvath, et al., Anticancer Res. 25, 3407, (2005).Google Scholar
  7. 7.
    L. A. Voskresenskaya and A. I. Volkova, Blood Coagulation System in Obstetrics and Gynecology (Tomsk State Uni., Tomsk, 1966) [in Russian].Google Scholar
  8. 8.
    K. M. Bogdanov and L. L. Romanovskaya, Biophysical Patterns of Tritium Water Metabolism (Energoizdat Moscow, 1981) [in Russia].Google Scholar
  9. 9.
    L. Bogin, R. Margalit, H. Ristau, et al., Microvasc. Res. 64, 104 (2002).CrossRefGoogle Scholar
  10. 10.
    A. V. Kosenkov, M. V. Gulyaev, N. V. Anisimov, et al., Phys. Wave Phenomena 23 (4), 213 (2015).CrossRefGoogle Scholar
  11. 11.
    V. P. Baklaushev, N. F. Grinenko, G. M. Yusubalieva, et al., Cell Technol. Biol. Med., No. 4, 581 (2015).Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • A. V. Kosenkov
    • 1
  • M. V. Gulyaev
    • 2
  • V. I. Lobyshev
    • 1
    Email author
  • G. M. Yusubalieva
    • 3
  • V. P. Baklaushev
    • 3
  1. 1.Department of Physics, Moscow State UniversityMoscowRussia
  2. 2.Faculty of Fundamental Medicine, Moscow State UniversityMoscowRussia
  3. 3.Federal Research and Clinical Center, Federal Medical and Biological AgencyMoscowRussia

Personalised recommendations