, Volume 63, Issue 5, pp 763–768 | Cite as

A Comparative Evaluation of the Actions of Different Secondary Metabolites of Marine Hydrobionts on the Redox Status of Tumor and Immune Cells

  • A. A. KlimovichEmail author
  • A. M. Popov
  • O. N. Styshova
  • A. A. Artyukov
  • A. V. Tsybulsky

Abstract—We performed a comparative analysis of the ability of a number of pharmacologically active natural compounds that are often considered as antioxidants to affect the redox status of the tumor (Ehrlich adenocarcinoma) and immune (splenocytes) cells. The following substances were studied: flavone luteolin and its sulfated derivative, 7,3'-luteolin disulfate from the eelgrass Zostera asiatica; oxycarotenoid astaxanthin from microalgae Haematococcus pluvialis, and a medicinal agent, Gistokhrom, whose active ingredient is hydroxy-1,4-naphthoquinone, echinochrome A from the flat sea urchin Scaphechinus mirabilis. The redox properties of the test compounds were evaluated in vitro by measuring the intracellular content of reactive oxygen species (ROS) using a selective fluorescent indicator, 2',7'-dihydrochlorofluorescein diacetate. The effect of the test substances on the intracellular level of ROS was determined at low (1 μg/mL) and high (10 μg/mL) doses, and in the presence or absence of a strong ROS inducer, the known antitumor agent doxorubicin, at a 10 μg/mL dose in an incubation medium. It has been shown that luteolin possesses the greatest antioxidant activity against both tumor and immune cells; luteolin disulfate and astaxanthin, which at the above doses reduce the ROS level both in the presence and absence of an inducer, have a lower antioxidant activity. Interestingly, unlike them, the drug Gistokhrom has a slight antioxidant effect on tumor cells only at a high dose and a weak effect on the redox status of splenocytes. In this work, we analyzed the possible role of ROS in biological activity and the mechanisms of action of the studied substances.

Keywords: luteolin luteolin disulfate astaxanthin echinochrome A reactive oxygen species 



This work was financially supported by the Russian Science Foundation (project no. 14-50-00034).


  1. 1.
    B. Kalyanaraman, Redox Biol. 1, 244 (2013).CrossRefGoogle Scholar
  2. 2.
    J. Kim, J. Kim, and J.-S. Bae, Exp. Mol. Medicine 48 (11), 269 (2016).CrossRefGoogle Scholar
  3. 3.
    Z. W. Zhang, X. C. Xu, T. Liu, and S. Yuan, Oxid. Med. Cell. Longev. 2016, ID 6859523 (2016).Google Scholar
  4. 4.
    M. Y. Kim, Oncol. Lett. 13 (3), 1417 (2017).CrossRefGoogle Scholar
  5. 5.
    O. Firuzi, R. Miri, M. Tavakkoli and L. Saso, Curr. Med. Chem. 18 (25), 3871 (2011).CrossRefGoogle Scholar
  6. 6.
    L. Gambhir, Drug Discov. Ther. 10 (2), 93 (2016).CrossRefGoogle Scholar
  7. 7.
    P. Angsutararux, S. Luanpitpong, and S. Issaragrisil, Oxid. Med. Cell. Longev. 2015, 13 (2015).CrossRefGoogle Scholar
  8. 8.
    G. C. Pereira, A. M. Silva, C. V. Diogo, et al., Curr. Pharmaceut. Design 17 (20), 2113 (2011).CrossRefGoogle Scholar
  9. 9.
    A. M. Popov, A. N. Osipov, E. A. Korepanova, et al., Biophysics (Moscow) 61 (6), 843 (2016).CrossRefGoogle Scholar
  10. 10.
    A. M. Popov, A. N. Osipov, E. A. Korepanova, et al., Biophysics (Moscow) 62 (3) 407 (2017).CrossRefGoogle Scholar
  11. 11.
    A. M. Popov, O. N. Krivoshapko, and A. A. Artyukov, Russ. J. Biopharmaceut. 5 (5), 13 (2013).Google Scholar
  12. 12.
    A. V. Tsybulsky, A. M. Popov, and O. N. Krivoshapko, Russ. J. Biopharmaceut. 5 (3) 21 (2013).Google Scholar
  13. 13.
    W. Wu, M. B. Lu, and L. J. Yu, Z. Naturforsch. 66 (5–6), 283 (2011).Google Scholar
  14. 14.
    A. M. Popov, O. N. Krivoshapko, A. A. Klimovich, and A. A. Artyukov, Biomed. Khim. 62 (1), 22 (2016).CrossRefGoogle Scholar
  15. 15.
    J. Li, W. Dai, Yu. Xia, et al., Marine Drugs 13 (10), 6064 (2015).CrossRefGoogle Scholar
  16. 16.
    O. N. Krivoshapko, A. M. Popov, A. A. Artyukov, et al., Biochemistry (Moscow), Suppl. Ser. B: Biomed. Chem. 5 (2) 152 (2011).Google Scholar
  17. 17.
    H. Yao and R. A. Jockusch, J. Phys. Chem. 117 (6), 1351 (2013).CrossRefGoogle Scholar
  18. 18.
    C. Loetchutinat, S. Kothan, and S. Dechsupa, J. Rad, Phys. Chem. 72 (2), 323 (2005).ADSGoogle Scholar
  19. 19.
    Physicians’ Desk Reference Guide to Drug Interactions, Side Effects, and Indications, 56th ed. (Thomson Healthcare, 2002)Google Scholar
  20. 20.
    A. B. Ribeiro, A. Berto, R. C. Chisté, et al., Pharm. Biol. 53 (9), 1267 (2015).CrossRefGoogle Scholar
  21. 21.
    R. Apak, K. Güçlü, B. Demirata, et al., Molecules 12, 1496 (2007).CrossRefGoogle Scholar
  22. 22.
    A. Y. Jahng, Pharm. Res. 36 (5), 517 (2013).Google Scholar
  23. 23.
    A. M. Popov and O. N. Krivoshapko, J. Biomed. Sci. Eng. 6, 543 (2013).CrossRefGoogle Scholar
  24. 24.
    L. Gambhir, Drug Discov. Ther. 10 (2), 93 (2016).CrossRefGoogle Scholar
  25. 25.
    A. A. Artyukov, A. M. Popov, A. V. Tsybulsky, et al., Biochemistry (Moscow) Suppl. Ser. B: Biomed. Chem. 7, 239 (2013).Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • A. A. Klimovich
    • 1
    • 2
    Email author
  • A. M. Popov
    • 1
    • 2
  • O. N. Styshova
    • 1
  • A. A. Artyukov
    • 1
  • A. V. Tsybulsky
    • 2
  1. 1.Elyakov Pacific Institute of Bioorganic Chemistry, Far East Branch, Russian Academy of SciencesVladivostokRussia
  2. 2.VladivostokRussia

Personalised recommendations