Advertisement

Biophysics

, Volume 63, Issue 5, pp 694–699 | Cite as

The Formation of Long-Lived Reactive Protein Species in Heat-Treated Solutions of Gelatin and Casein

  • V. E. Ivanov
  • A. V. Chernikov
  • S. V. Gudkov
  • V. I. BruskovEmail author
MOLECULAR BIOPHYSICS
  • 3 Downloads

Abstract—The formation of long-lived reactive species of gelatin, casein, and casein hydrolysate with a half-life of approximately 4 h in protein solutions subjected to moderate hyperthermia has been demonstrated by chemiluminescence analysis. The long-lived reactive species of these proteins and casein hydrolysate were found to cause prolonged generation of H2O2, and the mechanism underlying this process was considered. The body temperature elevation observed in warm-blooded organisms in various diseases is presumably accompanied by the formation of long-lived reactive species of various proteins; the generation of reactive oxygen species by these proteins may be one of the protective cellular mechanisms that contribute to elimination of diseases.

Keywords: reactive oxygen species long-lived reactive protein species hydrogen peroxide hyperthermia casein gelatin 

Notes

ACKNOWLEDGMENTS

This work was carried out in fulfilment of the State Task No. 007-00-94-18-00 for ITEB RAS and with partial financial support from the Russian Foundation for Basic Research (grant no. 17-44-500476 p_а) and a grant from the President of the Russian Federation for state support of young Russian scientists (MK-4521.2018.8). The research work on luminescence was supported by a project grant (AAAA-A18-118021390190-1).

REFERENCES

  1. 1.
    D. Einor, A. Bonisoli-Alquati, D. Costantini, et al., Sci. Tot. Environ. 548–549, 463 (2016).Google Scholar
  2. 2.
    S. Tharmalingam, S. Sreetharan, A. V. Kulesza, et al., Radiat. Res. 188 (4.2), 525 (2017).Google Scholar
  3. 3.
    B.-M. Kim, J.-S. Rhee, K.-W. Lee, et al., Comp. Biochem. Physiol. C 167, 15 (2015).Google Scholar
  4. 4.
    H. Wang and X. Zhang, Int. J. Mol. Sci. 18, 2175 (2017).CrossRefGoogle Scholar
  5. 5.
    Z. Wang, F. Cai, X. Chen, et al., PLoS One, 8 (9), e75044 (2013).ADSCrossRefGoogle Scholar
  6. 6.
    V. I. Lushchak, Chem. Biol. Interact. 224, 164 (2014).CrossRefGoogle Scholar
  7. 7.
    M. Schieber and N. S. Chandel, Curr. Biol. 24 (10), R453 (2014).CrossRefGoogle Scholar
  8. 8.
    J. R. Stone and S. Yang, Antioxid. Redox Signal. 8, 243 (2006).CrossRefGoogle Scholar
  9. 9.
    H. J. Forman, M. Maiorino, and F. Ursini, Biochemistry 49, 835 (2010).CrossRefGoogle Scholar
  10. 10.
    E. A. Veal, A. M. Day, and B. A. Morgan, Mol. Cell 26, 1 (2007).CrossRefGoogle Scholar
  11. 11.
    R. W. Habash, D. Krewski, R. Bansal, and H. T. Alhafid, Front. Biosci. (Elite Ed.) 3, 1169 (2011).CrossRefGoogle Scholar
  12. 12.
    X. Gao and H. Chen, Front. Med. 8, 1 (2014).CrossRefGoogle Scholar
  13. 13.
    V. I. Bruskov, Z. K. Masalimov, and A. V. Chernikov, Dokl. Biochem. Biophys. 384, 281 (2002).CrossRefGoogle Scholar
  14. 14.
    V. I. Bruskov, L. V. Malakhova, Z. K. Masalimov, and A. V. Chernikov, Nucleic Acids Res. 30, 1354 (2002).CrossRefGoogle Scholar
  15. 15.
    A. V. Chernikov and V. I. Bruskov, Biophysics (Moscow) 47 (5), 717 (2002).Google Scholar
  16. 16.
    V. I. Bruskov, A. V. Chernikov, S. V. Gudkov, and Zh. K. Massalimov, Biophysics (Moscow) 48 (6), 942 (2003).Google Scholar
  17. 17.
    V. S. Smirnova, S. V. Gudkov, A. V. Chernikov, and V. I. Bruskov, Biophysics (Moscow) 50 (2), 236 (2005).Google Scholar
  18. 18.
    A. V. Chernikov, S. V. Gudkov, I. N. Shtarkman, and V. I. Bruskov, Biophysics (Moscow) 52 (2), 185 (2007).CrossRefGoogle Scholar
  19. 19.
    I. N. Shtarkman, S. V. Gudkov, A. V. Chernikov, and V. I. Bruskov, Biophysics (Moscow) 53 (1), 1 (2008).CrossRefGoogle Scholar
  20. 20.
    S. V. Gudkov, O. E. Karp, S. A. Garmash, et al., Biophysics (Moscow) 57 (1), 5 (2012).Google Scholar
  21. 21.
    P. Caraceni, N. DeMaria, H. S. Ryu, et al., Free Radic. Biol. Med. 2, 339 (1997).CrossRefGoogle Scholar
  22. 22.
    J. Du and J. M. Gebicki, Int. J. Biochem. Cell Biol. 36, 2334 (2004).CrossRefGoogle Scholar
  23. 23.
    M. Gracanin, M. A. Lam, P. E. Morgan, et al., Free Radic. Biol. Med. 50, 389 (2011).CrossRefGoogle Scholar
  24. 24.
    M. J. Davies, S. Fu, and R. T. Dean, Biochem. J. 305, 643 (1995).CrossRefGoogle Scholar
  25. 25.
    A. S. Rahmanto, P. E. Morgan, C. L. Hawkins, and M. J. Davies, Free Radic. Biol. Med. 48, 1071 (2010).CrossRefGoogle Scholar
  26. 26.
    R. T. Dean, S. Gieseg, and M. J. Davies, Trends Biochem. Sci. 18, 437 (1993).CrossRefGoogle Scholar
  27. 27.
    V. Ceranini, J. Gee, E. Fioretti, et al., Biochim. Biophys. Acta 1773, 93 (2007).CrossRefGoogle Scholar
  28. 28.
    S. V. Avery, Biochem. J. 434, 201 (2011).CrossRefGoogle Scholar
  29. 29.
    V. I. Bruskov, N. R. Popova, V. E. Ivanov, et al., Biochem. Biophys. Res. Commun. 443, 957 (2014).CrossRefGoogle Scholar
  30. 30.
    V. E. Ivanov, O. E. Karp, N. R. Popova, et al., Al’manakh Klin. Med. 13, 17 (2014).Google Scholar
  31. 31.
    O. E. Karp, S. V. Gudkov, S. A. Garmash, et al., Dokl. Biochem. Biophys. 434, 250 (2010).CrossRefGoogle Scholar
  32. 32.
    V. I. Bruskov, O. E. Karp, S. A. Garmash, et al., Free Radic. Res. 46, 1280 (2012).CrossRefGoogle Scholar
  33. 33.
    S. V. Gudkov, I. N. Shtarkman, A. V. Chernikov, et al., Dokl. Biochem. Biophys. 413, 50 (2007).CrossRefGoogle Scholar
  34. 34.
    S. W. Ryter and R. M. Tyrrel, Free Radic. Biol. Med. 24, 1520 (1998).CrossRefGoogle Scholar
  35. 35.
    V. E. Ivanov, A. M. Usacheva, A. V. Chernikov, et al., J. Photochem. Photobiol. B 176, 36 (2017)CrossRefGoogle Scholar
  36. 36.
    S. D. Zakharov and A. V. Ivanov, Quantum Electron. 29, 1031 (1999).ADSCrossRefGoogle Scholar
  37. 37.
    S. D. Zakharov, I. M. Korochkin, A. S. Yusupov, et al., Semiconductors 48, 123 (2014).ADSCrossRefGoogle Scholar
  38. 38.
    B. M. Yavorskii and A. A. Detlaff, Handbook of Physics, 3rd ed. (Nauka, Moscow, 1990) [in Russian].Google Scholar
  39. 39.
    A. A. Krasnovsky, Jr., Biophysics (Moscow) 49, 289 (2004).Google Scholar
  40. 40.
    Y. Nakagami, Oxidative Med. Cell. Longev. 2016, 7469326 (2016).CrossRefGoogle Scholar
  41. 41.
    M. J. Davies, Biochim. Biophys. Acta 1703, 93 (2005).CrossRefGoogle Scholar
  42. 42.
    B. Frei, Y. Yamamoto, D. Niclas, and B. N. Ames, Anal. Biochem. 175, 120 (1988).CrossRefGoogle Scholar
  43. 43.
    S. Lindquist and E. Craig, Annu. Rev. Genet. 22, 631 (1988).CrossRefGoogle Scholar
  44. 44.
    X. Zhu, P. Wentworth, Jr., A. D. Wentworth, et al., Proc. Natl. Acad. Sci. U. S. A. 101, 2247 (2004).ADSCrossRefGoogle Scholar
  45. 45.
    P. Wentworth, Jr., A. D. Wentworth, X. Zhu, et al., Proc. Natl. Acad. Sci. U. S. A. 100, 1490 (2003).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • V. E. Ivanov
    • 1
  • A. V. Chernikov
    • 1
  • S. V. Gudkov
    • 2
    • 3
    • 4
  • V. I. Bruskov
    • 1
    Email author
  1. 1.Institute of Theoretical and Experimental Biophysics, Russian Academy of SciencesPushchinoRussia
  2. 2.Vladimirskii Institute of Clinical ResearchMoscowRussia
  3. 3.Prokhorov Institute of General Physics, Russian Academy of SciencesMoscowRussia
  4. 4.Lobachevskii National Research State UniversityNizhny NovgorodRussia

Personalised recommendations