Advertisement

Biophysics

, Volume 63, Issue 5, pp 727–734 | Cite as

The Adhesiveness of the OmpF and OmpC Porins from Yersinia pseudotuberculosis to J774 Macrophages

  • A. A. ByvalovEmail author
  • I. V. Konyshev
  • O. D. Novikova
  • O. Yu. Portnyagina
  • V. S. Belozerov
  • V. A. Khomenko
  • V. N. Davydova
CELL BIOPHYSICS
  • 1 Downloads

Abstract—The significance of the Yersinia pseudotuberculosis porins OmpF and OmpC for adhesion to macrophages J774 was assessed using optical trapping. The passive sensitization of polystyrene microspheres with the preparations of these porins was verified. Using a set of differently functionalized microspheres, it was shown that OmpF produced at a lower culture temperature contributes to the adhesiveness of the bacteria Y. pseudotuberculosis to macrophages, while OmpC synthesized at a temperature of 37°C does not have this property. These results can be explained by thermoinducible differences in the primary structure and conformational features of the outer loops of porin molecules. These differences are suggested to be necessary for effective circulation in the environment and manifestation of the invasive properties of Y. pseudotuberculosis as an agent of saprozoonotic infection.

Keywords: adhesiveness porins Y. pseudotuberculosis macrophage optical trap 

Notes

АСKNОWLЕDGMЕNTS

This work is supported in the framework of the State task no. 20.6834.2017/BCh of the Ministry of Education and Science of the Russian Federation.

REFERENCES

  1. 1.
    V. Zav’yalov, A. Zavialov, G. Zav’yalova, et al., FEMS Microbiol. Rev. 34 (3), 317 (2010).CrossRefGoogle Scholar
  2. 2.
    K. M. Mikula, R. Kolodziejczyk, and A. Goldman, Front. Cell. Infect. Microbiol. 2, 1 (2012).Google Scholar
  3. 3.
    W. Achouak, R. De Mot, and T. Heulin, FEMS Microbiol. Ecol. 16 (1), 19 (1994).CrossRefGoogle Scholar
  4. 4.
    G. Hemery, S. Chevalier, M. N. Bellon-Fontaine, et al., J. Ind. Microbiol. Biotechnol. 34 (1), 49 (2007).CrossRefGoogle Scholar
  5. 5.
    N. Rolhion, F. A. Carvalho, and A. Darfeuille-Michaud, Mol. Microbiol. 63 (6), 1684 (2007).CrossRefGoogle Scholar
  6. 6.
    B. B. Hara-Kaonga and T. G. Pistole, Can. J. Microbiol. 50 (9), 719 (2004).CrossRefGoogle Scholar
  7. 7.
    R. S. Negm and T. G. Pistole, Can. J. Microbiol. 45 (8), 658 (1999).CrossRefGoogle Scholar
  8. 8.
    R. S. Negm and T. G. Pistole, FEMS Immunol. Med. Microbiol. 20 (3), 191 (1998).CrossRefGoogle Scholar
  9. 9.
    H. M. A. Hejair, Y. Zhu, J. Ma, et al., Microb. Pathog. 107, 29 (2017).CrossRefGoogle Scholar
  10. 10.
    C. M. Beck, J. L. Willett, D. A. Cunningham, et al., PLoS Pathog. 12 (10), e1005925 (2016).CrossRefGoogle Scholar
  11. 11.
    J. C. Leo and M. Skurnik, Adv. Exp. Med. Biol. 715, 1 (2011).CrossRefGoogle Scholar
  12. 12.
    N. Chauhan, A. Wrobel, M. Skurnik, et al., Proteomics Clin. Appl. 10 (9–10), 949 (2016).Google Scholar
  13. 13.
    M. B. Lawrenz, J. D. Lenz, and V. L. Miller, Infect. Immun. 77 (1), 317 (2009).CrossRefGoogle Scholar
  14. 14.
    M. K. Nair, L. De Masi, M. Yue, et al., Infect. Immun. 83 (5), 1809 (2015).CrossRefGoogle Scholar
  15. 15.
    A.-M. Krachler, H. Ham, and K. Orth, Proc. Natl. Acad. Sci. U. S. A. 108 (28), 11614 (2011).ADSCrossRefGoogle Scholar
  16. 16.
    A.-M. Krachler and K. Orth, J. Biol. Chem. 286 (45), 38939 (2011).CrossRefGoogle Scholar
  17. 17.
    S. Mildiner-Earley and V. L. Miller, Infect. Immun. 74 (7), 4361 (2006).CrossRefGoogle Scholar
  18. 18.
    K. Brzostek and A. Raczkowska, Folia Microbiol. (Praha) 52, 73 (2007).CrossRefGoogle Scholar
  19. 19.
    N. F. Timchenko, O. D. Novikova, I. M. Ermak, et al., Zh. Mikrobiol. 6, 38 (1986).Google Scholar
  20. 20.
    A. A. Byvalov, V. L. Kononenko, and I. V. Konyshev, Appl. Biochem. Microbiol. 53 (2), 258 (2017).CrossRefGoogle Scholar
  21. 21.
    O. D. Novikova, V. A. Khomenko, V. I. Emelyanenko, et al., Biol. Membrany 28 (1), 1 (2011).CrossRefGoogle Scholar
  22. 22.
    B. W. Silverman, Density Estimation for Statistics and Data Analysis (Chapman and Hall, London, 1986).CrossRefzbMATHGoogle Scholar
  23. 23.
    W. Achouak, T. Heulin, and J. P. Pages, FEMS Microbiol. Lett. 199 (1), 1 (2001).CrossRefGoogle Scholar
  24. 24.
    A. A. Delvig and B. F. Semenov, Zh. Mikrobiol. Epidemiol. Immunol. 6, 92 (1997).Google Scholar
  25. 25.
    S. P. Singh, S. R. Singh, Y. U. Williams, et al., Infect. Immun. 63 (12), 4600 (2005).Google Scholar
  26. 26.
    K. V. Guzev, M. P. Isaeva, O. D. Novikova, et al., Biochemistry (Moscow) 70 (10), 1104 (2005).CrossRefGoogle Scholar
  27. 27.
    A. M. Stenkova, M. P. Isaeva, F. N. Shubin, et al., PLoS ONE 6 (5), e20546 (2011).ADSCrossRefGoogle Scholar
  28. 28.
    S. Alberti, F. Rodríguez-Quiñones, T. Schirmer, et al., Infect. Immun. 63 (3), 903 (1995).Google Scholar
  29. 29.
    D. Fourel, A. Bernadac, and J. M. Pagès, Eur. J. Biochem. 222 (2), 625 (1994).CrossRefGoogle Scholar
  30. 30.
    T. D. Ho and J. M. Slauch, J. Bacteriol. 183 (4), 1495 (2001).CrossRefGoogle Scholar
  31. 31.
    A. M. Andrianov, Conformational Analysis of Proteins: Theory and Applications (Belaruskaya Navuka, Minsk, 2013) [in Russian].Google Scholar
  32. 32.
    Y. A. Knirel, S. V. Dentovskaya, S. N. Senchenkova, et al., J. Endotoxin Res. 12 (6), 3 (2006).Google Scholar
  33. 33.
    O. Holst, Adv. Exp. Med. Biol. 529, 219 (2003).CrossRefGoogle Scholar
  34. 34.
    M. Skurnik, Adv. Exp. Med. Biol. 529, 187 (2003).CrossRefGoogle Scholar
  35. 35.
    H. Nummeline, M. C. Merckel, Y. E. L. Tahir, et al., Adv. Exp. Med. Biol. 529, 85 (2003).CrossRefGoogle Scholar
  36. 36.
    G. P. Somov, V. I. Pokrovskii, N. N. Besednova, and F. F. Antonenko, Pseudotuberculosis (Meditsina, Moscow, 2001) [in Russian].Google Scholar
  37. 37.
    M. Achtman, K. Zurth, C. Morelli, et al. Proc. Natl. Acad. Sci. U. S. A. 96, 14043 (1999).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • A. A. Byvalov
    • 1
    • 2
  • I. V. Konyshev
    • 1
    • 2
  • O. D. Novikova
    • 3
  • O. Yu. Portnyagina
    • 3
  • V. S. Belozerov
    • 1
    • 2
  • V. A. Khomenko
    • 3
  • V. N. Davydova
    • 3
  1. 1.Vyatka State UniversityKirovRussia
  2. 2.Institute of Physiology, Komi Science Center, Ural Branch, Russian Academy of SciencesSyktyvkarRussia
  3. 3.Elyakov Pacific Institute of Bioorganic Chemistry, Far East Branch, Russian Academy of SciencesVladivostokRussia

Personalised recommendations