Advertisement

Biochemistry (Moscow)

, Volume 84, Issue 9, pp 1107–1115 | Cite as

Spectral and Photochemical Properties of Rhodobacter sphaeroides R-26 Reaction Center Films in Vacuum

  • A. A. ZabelinEmail author
  • V. A. Shkuropatova
  • V. A. Shuvalov
  • A. Ya. Shkuropatov
Article
  • 1 Downloads

Abstract

Using absorption spectroscopy in the visible/near-IR and mid-IR regions, spectral and photochemical properties of isolated reaction centers (RCs) from Rhodobacter sphaeroides R-26 were studied in dried films on the inorganic support surface (quartz or CaF2 plates) under vacuum dehydration conditions (10−2 or 7·10−5 mm Hg). Three detergents, N,N-dimethyldodecylamine N-oxide (LDAO), Triton X-100 (TX100), and n-dodecyl-β-D-maltoside (DM), were tested for their ability to stabilize the RC–detergent complexes in the vacuum-dried state. It was shown that in the presence of LDAO, RC complexes underwent destruction in vacuum. In contrast, DM provided an environment that minimized irreversible disruptive changes in the RCs in vacuum. The effects of vacuum dehydration on the RC–DM films included a small increase in the content of α-helices in the RC protein, a short-wavelength reversible shift in the optical transitions of pigments, and minor changes in the electronic structure of the P+ dimer. The films retained their photochemical activity upon excitation with high-intensity light (200 mW/cm2). TX100 also helped to maintain spectral and functional properties of the RCs in vacuum; however, in this case, the stabilizing effect was less pronounced than in the presence of DM, especially, at high detergent concentrations. The results are discussed within the framework of a model suggesting that the detergent-protein interactions and the properties of detergent micelles play a dominant role in maintaining the structure of the RCs upon vacuum dehydration of the RC complexes. The obtained data can be useful for developing hybrid photoconverting systems based on bacterial RCs.

Keywords

reaction center absorption spectroscopy vacuum dehydration detergent micelles Rhodobacter sphaeroides R-26 

Abbreviations

ΔA

absorbance change

BChl

bacteriochlorophyll

BA and BB

monomeric BChl molecules in branches A and B, respectively

BPheo

bacteriopheophytin

DM

n-dodecyl-β-D-maltoside

FTIR spectroscopy

Fourier-transform infrared spectroscopy

HA and HB

BPheo molecules in branches A and B, respectively

LDAO

N,N-dimethyldodecylamine-N-oxide

P

primary electron donor, a dimer of BChl molecules

PA and PB

BChl molecules that form P

QA

primary quinone acceptor

QB

secondary quinone acceptor

RC

reaction center

TX100

Triton X-100

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Funding. The study was conducted under the Government Contract no. AAAA-A17030110140-5 and partially supported by the Russian Foundation for Basic Research (project 16-34-00829).

Compliance with ethical standards. This study does not contain description of any research with animals or human participants performed by any of the authors.

References

  1. 1.
    Blankenship, R. E. (2014) Molecular Mechanisms of Photosynthesis, Wiley Blackwell, Chichester.Google Scholar
  2. 2.
    Allen, J. P., Feher, G., Yeates, T. O., Komiya, H., and Rees, D. C. (1987) Structure of the reaction center from Rhodobacter sphaeroides R-26: the protein subunits, Proc. Natl. Acad. Sci. USA, 84, 6162–6166, doi:  https://doi.org/10.1073/pnas.84.17.6162.CrossRefGoogle Scholar
  3. 3.
    Koepke, J., Krammer, E.-M., Klingen, A. R., Sebban, P., Ullmann, G. M., and Fritzsch, G. (2007) pH modulates the quinone position in the photosynthetic reaction center from Rhodobacter sphaeroides in the neutral and charge separated states, J. Mol. Biol., 371, 396–409, doi:  https://doi.org/10.1016/j.jmb.2007.04.082.CrossRefGoogle Scholar
  4. 4.
    Jones, M. (2009) Structural plasticity of reaction centers from purple bacteria, in The Purple Phototrophic Bacteria (Hunter, C. N., Daldal, F., Thurnauer, M. C., and Beatty, J. T., eds.) Springer, Dordrecht, The Netherlands, pp. 295–321.CrossRefGoogle Scholar
  5. 5.
    Lu, Y., Xu, J., Liu, B., and Kong, J. (2007) Photosynthetic reaction center functionalized nano-composite films: effective strategies for probing and exploiting the photo-induced electron transfer of photosensitive membrane protein, Biosens. Bioelectron., 22, 1173–1185, doi:  https://doi.org/10.1016/j.bios.2006.05.026.CrossRefGoogle Scholar
  6. 6.
    Das, R., Kiley, P. J., Segal, M., Norville, J., Yu, A. A., Wang, L., Trammell, S. A., Reddick, L. E., Kumar, R., Stellacci, F., Lebedev, N., Schnur, J., Bruce, B. D., Zhang, S., and Baldo, M. (2004) Integration of photosynthetic protein molecular complexes in solid-state electronic devices, Nano Lett., 4, 1079–1083, doi:  https://doi.org/10.1021/nl049579f.CrossRefGoogle Scholar
  7. 7.
    Kiley, P., Zhao, X., Vaughn, M., Baldo, M. A., Bruce, B. D., and Zhang, S. (2005) Self-assembling peptide detergents stabilize isolated photosystem I on a dry surface for an extended time, PLoS Biol., 3, e230, doi:  https://doi.org/10.1371/journal.pbio.0030230.CrossRefGoogle Scholar
  8. 8.
    Lukashev, E. P., Knox, P. P., Oleinikov, I. P., Seifullina, N. Kh., and Grishanova, N. P. (2016) Investigation of stability of photosynthetic reaction center and quantum dot hybrid films, Biochemistry (Moscow), 81, 58–63, doi:  https://doi.org/10.1134/S0006297916010065.CrossRefGoogle Scholar
  9. 9.
    Xia, N., May, C. J., McArthur, S. L., and Castner, D. G. (2002) Time-of-flight secondary ion mass spectrometry analysis of conformational changes in adsorbed protein films, Langmuir, 18, 4090–4097, doi:  https://doi.org/10.1021/la020022u.CrossRefGoogle Scholar
  10. 10.
    Barrera, N. P., Di Bartolo, N., Booth, P. J., and Robinson, C. V. (2008) Micelles protect membrane complexes from solution to vacuum, Science, 321, 243–246, doi:  https://doi.org/10.1126/science.1159292.CrossRefGoogle Scholar
  11. 11.
    Reading, E., Liko, I., Allison, T. M., Benesch, J. L. P., Laganowsky, A., and Robinson, C. V. (2015) The role of the detergent micelle in preserving the structure of membrane proteins in the gas phase, Angew. Chem. Int. Ed., 54, 4577–4581, doi:  https://doi.org/10.1002/anie.201411622.CrossRefGoogle Scholar
  12. 12.
    Seibert, M., Picorel, R., Rubin, A. B., and Connolly, J. S. (1988) Spectral, photophysical, and stability properties of isolated photosystem II reaction center, Plant Physiol., 87, 303–306, doi:  https://doi.org/10.1104/pp.87.2.303.CrossRefGoogle Scholar
  13. 13.
    Gall, B., and Scheer, H. (1998) Stabilization of photosystem II reaction centers: influence of bile salt detergents and low pH, FEBS Lett., 431, 161–166, doi:  https://doi.org/10.1016/S0014-5793(98)00739-X.CrossRefGoogle Scholar
  14. 14.
    Zabelin, A. A., Shkuropatova, V. A., Shuvalov, V. A., and Shkuropatov, A. Ya. (2011) FTIR spectroscopy of the reaction center of Chloroflexus aurantiacus: photoreduction of the bacteriopheophytin electron acceptor, Biochim. Biophys. Acta, 1807, 1013–1021, doi:  https://doi.org/10.1016/j.bbabio.2011.05.018.CrossRefGoogle Scholar
  15. 15.
    Moller, J. V., and le Maire, M. (1993) Detergent binding as a measure of hydrophobic surface area of integral membrane proteins, J. Biol. Chem., 268, 18659–18672.Google Scholar
  16. 16.
    Zabelin, A. A., Shkuropatova, V. A., Shuvalov, V. A., and Shkuropatov, A. Ya. (2012) FTIR spectroscopy of the reaction center of Chloroflexus aurantiacus: photooxidation of the primary electron donor, Biochemistry (Moscow), 77, 157–164, doi:  https://doi.org/10.1134/S000629791202006X.CrossRefGoogle Scholar
  17. 17.
    Clayton, R. (1978) Effects of dehydration on reaction centers from Rhodopseudomonas sphaeroides, Biochim. Biophys. Acta, 504, 255–264, doi:  https://doi.org/10.1016/0005-2728(78)90174-3.CrossRefGoogle Scholar
  18. 18.
    Malferrari, M., Turina, P., Francia, F., Mezzetti, A., Leibl, W., and Venturoli, G. (2015) Dehydration affects the electronic structure of the primary electron donor in bacterial photosynthetic reaction centers: evidence from visible-NIR and light-induced difference FTIR spectroscopy, Photochem. Photobiol. Sci., 14, 238–251, doi:  https://doi.org/10.1039/c4pp00245h.CrossRefGoogle Scholar
  19. 19.
    Hughes, A. V., Rees, P., Heathcote, P., and Jones, M. R. (2006) Kinetic analysis of the thermal stability of the photosynthetic reaction center from Rhodobacter sphaeroides, Biophys. J., 90, 4155–4166, doi:  https://doi.org/10.1529/biophysj.105.070029.CrossRefGoogle Scholar
  20. 20.
    Barth, A. (2007) Infrared spectroscopy of proteins, Biochim. Biophys. Acta, 1767, 1073–1101, doi:  https://doi.org/10.1016/j.bbabio.2007.06.004.CrossRefGoogle Scholar
  21. 21.
    Arrondo, J. L. R., Muga, A., Castresana, J., and Goni, F. M. (1993) Quantitative studies of the structure of proteins in solution by Fourier-transform infrared spectroscopy, Progr. Biophys. Mol. Biol., 59, 26–56, doi:  https://doi.org/10.1016/0079-6107(93)90006-6.CrossRefGoogle Scholar
  22. 22.
    Nabedryk, E., Mantele, W., and Breton, J. (1989) FTIR investigations on orientation of protein secondary structures and primary reactions in photosynthesis, in Techniques and New Developments in Photosynthesis Research (Barber, J., and Malkin, R., eds.) NATO ASI Ser., Plenum Press, New York, Vol. 168, pp. 17–34.CrossRefGoogle Scholar
  23. 23.
    Popova, A. V., Hundertmark, M., Seckler, R., and Hinch, D. K. (2011) Structural transitions in the intrinsically disordered plant dehydration stress protein LEA7 upon drying are modulated by the presence of membranes, Biochim. Biophys. Acta, 1808, 1879–1887, doi:  https://doi.org/10.1016/j.bbamem.2011.03.009.CrossRefGoogle Scholar
  24. 24.
    Yoneda, J. S., Miles, A. J., Araujo, A. P. U., and Wallace, B. A. (2017) Differential dehydration effects on globular proteins and intrinsically disordered proteins during film formation, Prot. Res., 26, 718–726, doi:  https://doi.org/10.1002/pro.3118.Google Scholar
  25. 25.
    Lutz, M., and Mantele, W. (1991) Vibrational spectroscopy of chlorophylls, in Chlorophylls (Scheer, H., ed.) CRC Press, Boca Raton, FL, pp. 855–902.Google Scholar
  26. 26.
    Morita, E. H., Hayashi, H., and Tasumi, M. (1993) Temperature dependence of the light-induced infrared difference spectra of chromatophores and reaction centers from photosynthetic bacteria, Biochim. Biophys. Acta, 1142, 146–154, doi: 0.1016/0005-2728(93)90096-X.CrossRefGoogle Scholar
  27. 27.
    Nikolaev, G. M., Knox, P. P., Kononenko, A. A., Grishanova, N. P., and Rubin, A. B. (1980) Photo-induced electron transport and water state in Rhodospirillum rubrum chromatophores, Biochim. Biophys. Acta, 590, 194–201, doi:  https://doi.org/10.1016/0005-2728(80)90024-9.CrossRefGoogle Scholar
  28. 28.
    Francia, F., Palazzo, G., Mallardi, A., Cordone, L., and Venturoli, G. (2003) Residual water modulates QA-to-QB electron transfer in bacterial reaction centers embedded in trehalose amorphous matrices, Biophys. J., 85, 2760–2775, doi:  https://doi.org/10.1016/S0006-3495(03)74698-0.CrossRefGoogle Scholar
  29. 29.
    Naberdyk, E., Allen, J. P., Taguchi, A. K. W., Williams, J. C., Woodbury, N. W., and Breton, J. (1993) Fourier transform infrared study of the primary electron donor in chromatophores of Rhodobacter sphaeroides with reaction centers genetically modified at residues M160 and L131, Biochemistry, 32, 13879–13885, doi:  https://doi.org/10.1021/bi00213a017.CrossRefGoogle Scholar
  30. 30.
    Breton, J., Nabedryk, E., and Parson, W. W. (1992) A new infrared electronic transition of the oxidized primary electron donor in bacterial reaction centers: a way to assess resonance interactions between the bacteriochlorophylls, Biochemistry, 31, 7503–7510, doi:  https://doi.org/10.1021/bi00148a010.CrossRefGoogle Scholar
  31. 31.
    Reimers, J. R., and Hush, N. S. (2003) Modeling the bacterial photosynthetic reaction center. VII. Full simulation of the intervalence hole-transfer absorption spectrum of the special-pair radical cation, J. Chem. Phys., 119, 3262–3277, doi:  https://doi.org/10.1063/1.1589742.CrossRefGoogle Scholar
  32. 32.
    Shuvalov, V. A., Shkuropatov, A. Ya., Kulakova, S. M., Ismailov, M. A., and Shkuropatova, V. A. (1986) Photoreactions of bacteriopheophytins and bacteriochlorophylls in reaction centers of Rhodopseudomonas sphaeroides and Chloroflexus aurantiacus, Biochim. Biophys. Acta, 849, 337–346, doi:  https://doi.org/10.1016/0005-2728(86)90145-3.CrossRefGoogle Scholar
  33. 33.
    Roth, M., Lewit-Bentley, A., Michel, H., Deisenhofer, J., Huber, R., and Oesterhelt, D. (1989) Detergent structure in crystals of a bacterial photosynthetic reaction centre, Nature, 340, 659–662, doi:  https://doi.org/10.1038/340659a0.CrossRefGoogle Scholar
  34. 34.
    Roth, M., Arnoux, B., Ducruix, A., and Reiss-Husson, F. (1991) Structure of the detergent phase and protein–detergent interactions in crystals of the wild-type (strain Y) Rhodobacter sphaeroides photochemical reaction center, Biochemistry, 30, 9403–9413, doi:  https://doi.org/10.1021/bi00103a003.CrossRefGoogle Scholar
  35. 35.
    Rouse, S. L., Marcoux, J., Robinson, C. V., and Sansom, M. S. P. (2013) Dodecyl maltoside protects membrane proteins in vacuo, Biophys. J., 105, 648–656, doi:  https://doi.org/10.1016/j.bpj.2013.06.025.CrossRefGoogle Scholar
  36. 36.
    Helenius, A., McCaslin, D. R., Fries, E., and Tanford, C. (1979) Properties of detergents, Meth. Enzymol., 56, 734–749, doi:  https://doi.org/10.1016/0076-6879(79)56066-2.CrossRefGoogle Scholar
  37. 37.
    Giorgio, G., Colafemmina, G., Mavelli, F., Murgiac, S., and Palazzo, G. (2016) The impact of alkanes on the structure of Triton X100 micelles, RSC Adv., 6, 825–836, doi:  https://doi.org/10.1039/c5ra21691e.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • A. A. Zabelin
    • 1
    Email author
  • V. A. Shkuropatova
    • 1
  • V. A. Shuvalov
    • 1
  • A. Ya. Shkuropatov
    • 1
  1. 1.Institute of Basic Biological Problems, Pushchino Scientific Center for Biological ResearchRussian Academy of SciencesPushchino, Moscow RegionRussia

Personalised recommendations