Advertisement

Biochemistry (Moscow)

, Volume 84, Issue 9, pp 1085–1092 | Cite as

Low Ouabain Doses and AMP-Activated Protein Kinase as Factors Supporting Electrogenesis in Skeletal Muscle

  • V. V. Kravtsova
  • N. A. Vilchinskaya
  • V. L. Rozlomii
  • B. S. Shenkman
  • I. I. KrivoiEmail author
Article
  • 1 Downloads

Abstract

Many motor disorders are associated with depolarization of the membrane of skeletal muscle fibers due to the impaired functioning of Na,K-ATPase. Here, we studied the role of ouabain (specific Na,K-ATPase ligand) and AMP-activated protein kinase (key regulator of muscle metabolism) in the maintenance of muscle electrogenesis; the levels of these endogenous factors are directly related to the motor activity. After 4-day intraperitoneal administration of ouabain (1 μg/kg daily), a hyperpolarization of sarcolemma was registered in isolated rat diaphragm muscles due to an increase in the electrogenic activity of Na,K-ATPase. In acute experiments, addition of nanomolar ouabain concentrations to the bathing solution resulted in the muscle membrane hyperpolarization within 15 min. The effect of ouabain reversed to membrane depolarization with the increase in the external potassium concentration. It is possible that Na,K-ATPase activation by ouabain may be regulated by such factors as specific subcellular location, interaction with molecular partners, and changes in the ionic balance. Preventive administration of the AMP-activated protein kinase activator AICAR (5-aminoimidazole-4-carboxamide-1-β-D-ribofuranoside; 400 mg/kg body weight daily for 7 days) in chronic experiments resulted in the stabilization of the endplate structure and abolishment of depolarization of the rat soleus muscle membrane caused by the motor activity cessation. The obtained data can be useful for creating approaches for correction of muscle dysfunction, especially at the early stages, prior to the development of muscle atrophy.

Keywords

skeletal muscle motor activity ouabain Na,K-ATPase AMP-activated protein kinase 

Abbreviations

α-BTX

α-bungarotoxin

AICAR

5-aminoimidazole-4-carboxamide-1-β-D-ribofuranoside

AMPK

AMP-activated protein kinase

HS

hindlimb suspension

nAChR

nicotinic acetylcholine receptor

RMP

resting membrane potential

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The authors are grateful to the Development of Molecular and Cell Technologies Resource Center of the St. Petersburg State University and to N. A. Kostin for the help with confocal microscopy.

Funding. This work was supported by the Russian Science Foundation (project 18-15-00043).

Compliance with ethical standards. All applicable international, national, and/or institutional guidelines for the care and use of animals have been followed.

References

  1. 1.
    Filatov, G. N., Pinter, M. J., and Rich, M. M. (2005) Resting potential-dependent regulation of the voltage sensitivity of sodium channel gating in rat skeletal muscle in vivo, J. Gen. Physiol., 126, 161–172, doi:  https://doi.org/10.1085/jgp.200509337.CrossRefGoogle Scholar
  2. 2.
    Heiny, J. A., Kravtsova, V. V., Mandel, F., Radzyukevich, T. L., Benziane, B., Prokofiev, A. V., Pedersen, S. E., Chibalin, A. V., and Krivoi, I. I. (2010) The nicotinic acetylcholine receptor and the Na,K-ATPase α2 isoform interact to regulate membrane electrogenesis in skeletal muscle, J. Biol. Chem., 285, 28614–28626, doi:  https://doi.org/10.1074/jbc.M110.150961.CrossRefGoogle Scholar
  3. 3.
    Krivoi, I. I., and Petrov, A. M. (2019) Cholesterol and the safety factor for neuromuscular transmission, Int. J. Mol. Sci., 20, E1046, doi:  https://doi.org/10.3390/ijms20051046.CrossRefGoogle Scholar
  4. 4.
    Tyapkina, O., Volkov, E., Nurullin, L., Shenkman, B., Kozlovskaya, I., Nikolsky, E., and Vyskocil, F. (2009) Resting membrane potential and Na+,K+-ATPase of rat fast and slow muscles during modeling of hypogravity, Physiol. Res., 58, 599–603.Google Scholar
  5. 5.
    Miles, M. T., Cottey, E., Cottey, A., Stefanski, C., and Carlson, C. G. (2011) Reduced resting potentials in dystrophic (mdx) muscle fibers are secondary to NF-κB-dependent negative modulation of ouabain sensitive Na-K pump activity, J. Neurol. Sci., 303, 53–60, doi:  https://doi.org/10.1016/j.jns.2011.01.015.CrossRefGoogle Scholar
  6. 6.
    Kravtsova, V. V., Timonina, N. A., Zakir’yanova, G. F., Sokolova, A. V., Mikhailov, V. M., Zefirov, A. L., and Krivoi, I. I. (2018) The structural and functional characteristics of the motor end plates of dysferlin-deficient mice, Neurochem. J., 12, 305–310, doi: org/ https://doi.org/10.1134/S1819712418040049.CrossRefGoogle Scholar
  7. 7.
    Kravtsova, V. V., Matchkov, V. V., Bouzinova, E. V., Vasiliev, A. N., Razgovorova, I. A., Heiny, J. A., and Krivoi, I. I. (2015) Isoform-specific Na,K-ATPase alterations precede disuse-induced atrophy of rat soleus muscle, Biomed Res. Int., 2015, 720172, doi:  https://doi.org/10.1155/2015/720172.CrossRefGoogle Scholar
  8. 8.
    Kravtsova, V. V., Petrov, A. M., Matchkov, V. V., Bouzinova, E. V., Vasiliev, A. N., Benziane, B., Zefirov, A. L., Chibalin, A. V., Heiny, J. A., and Krivoi, I. I. (2016) Distinct α2 Na,K-ATPase membrane pools are differently involved in early skeletal muscle remodeling during disuse, J. Gen. Physiol., 147, 175–188, doi:  https://doi.org/10.1085/jgp.201511494.CrossRefGoogle Scholar
  9. 9.
    DiFranco, M., Hakimjavadi, H., Lingrel, J. B., and Heiny, J. A. (2015) Na,K-ATPase α2 activity in mammalian skeletal muscle T-tubules is acutely stimulated by extracellular K+, J. Gen. Physiol., 146, 281–294, doi:  https://doi.org/10.1085/jgp.201511407.CrossRefGoogle Scholar
  10. 10.
    Kravtsova, V. V., Bouzinova, E. V., Machkov, V. V., Timonina, N. A., Zakyrjanova, G. F., Zefirov, A. L., and Krivoi, I. I. (2019) Abnormal membrane localization of α2 isoform of Na,K-ATPase in m. soleus of dysferlin-deficient mice, Bull. Exp. Biol. Med., 166, 593–597, doi:  https://doi.org/10.1007/s10517-019-04398-z.CrossRefGoogle Scholar
  11. 11.
    Blaustein, M. P., Chen, L., Hamlyn, J. M., Leenen, F. H., Lingrel, J. B., Wier, W. G., and Zhang, J. (2016) Pivotal role of α2 Na+ pumps and their high affinity ouabain binding site in cardiovascular health and disease, J. Physiol., 594, 6079–6103, doi:  https://doi.org/10.1113/JP272419.CrossRefGoogle Scholar
  12. 12.
    Khalaf, F. K., Dube, P., Mohamed, A., Tian, J., Malhotra, D., Haller, S. T., and Kennedy, D. J. (2018) Cardiotonic steroids and the sodium trade balance: new insights into trade-off mechanisms mediated by the Na+/K+-ATPase, Int. J. Mol. Sci., 19, E2576, doi:  https://doi.org/10.3390/ijms19092576.CrossRefGoogle Scholar
  13. 13.
    Bauer, N., Muller-Ehmsen, J., Kramer, U., Hambarchian, N., Zobel, C., Schwinger, R. H., Neu, H., Kirch, U., Grunbaum, E. G., and Schoner, W. (2005) Ouabain-like compound changes rapidly on physical exercise in humans and dogs: effects of β-blockade and angiotensin-converting enzyme inhibition, Hypertension, 45, 1024–1028, doi:  https://doi.org/10.1161/01.HYP.0000165024.47728.f7.CrossRefGoogle Scholar
  14. 14.
    Radzyukevich, T. L., Lingrel, J. B., and Heiny, J. A. (2009) The cardiac glycoside binding site on the Na,K-ATPase α2 isoform plays a role in the dynamic regulation of active transport in skeletal muscle, Proc. Natl. Acad. Sci. USA, 106, 2565–2570, doi:  https://doi.org/10.1073/pnas.0804150106.CrossRefGoogle Scholar
  15. 15.
    Gao, J., Wymore, R. S., Wang, Y., Gaudette, G. R., Krukenkamp, I. B., Cohen, I. S., and Mathias, R. T. (2002) Isoform-specific stimulation of cardiac Na/K pumps by nanomolar concentrations of glycosides, J. Gen. Physiol., 119, 297–312.CrossRefGoogle Scholar
  16. 16.
    Saunders, R., and Scheiner-Bobis, G. (2004) Ouabain stimulates endothelin release and expression in human endothelial cells without inhibiting the sodium pump, Eur. J. Biochem., 271, 1054–1062, doi:  https://doi.org/10.1111/j.1432-1033.2004.04012.x.CrossRefGoogle Scholar
  17. 17.
    Holthouser, K. A., Mandal, A., Merchant, M. L., Schelling, J. R., Delamere, N. A., Valdes, R. R., Jr., Tyagi, S. C., Lederer, E. D., and Khundmiri, S. J. (2010) Ouabain stimulates Na-K-ATPase through a sodium/hydrogen exchanger-1 (NHE-1)-dependent mechanism in human kidney proximal tubule cells, Am. J. Physiol. Renal Physiol., 299, F77–F90, doi:  https://doi.org/10.1152/ajprenal.00581.2009.CrossRefGoogle Scholar
  18. 18.
    Ketchem, C. J., Conner, C. D., Murray, R. D., DuPlessis, M., Lederer, E. D., Wilkey, D., Merchant, M., and Khundmiri, S. J. (2016) Low dose ouabain stimulates Na-K ATPase a1 subunit association with angiotensin II type 1 receptor in renal proximal tubule cells, Biochim. Biophys. Acta, 1863, 2624–2636, doi:  https://doi.org/10.1016/j.bbamcr.2016.07.008.CrossRefGoogle Scholar
  19. 19.
    Klimanova, E. A., Tverskoi, A. M., Koltsova, S. V., Sidorenko, S. V., Lopina, O. D., Tremblay, J., Hamet, P., Kapilevich, L. V., and Orlov, S. N. (2017) Time- and dose-dependent actions of cardiotonic steroids on transcriptome and intracellular content of Na+ and K+: a comparative analysis, Sci. Rep., 7, 45403, doi:  https://doi.org/10.1038/rep45403.CrossRefGoogle Scholar
  20. 20.
    Vilchinskaya, N. A., Mochalova, E. P., Nemirovskaya, T. L., Mirzoev, T. M., Turtikova, O. V., and Shenkman, B. S. (2017) Rapid decline in MyHC I(β) mRNA expression in rat soleus during hindlimb unloading is associated with AMPK dephosphorylation, J. Physiol., 595, 7123–7134, doi:  https://doi.org/10.1113/JP275184.CrossRefGoogle Scholar
  21. 21.
    Vilchinskaya, N. A., Krivoi, I. I., and Shenkman, B. S. (2018) AMP-activated protein kinase as a key trigger for the disuse-induced skeletal muscle remodeling, Int. J. Mol. Sci., 19, E3558, doi:  https://doi.org/10.3390/ijms19113558.CrossRefGoogle Scholar
  22. 22.
    Chibalin, A. V., Benziane, B., Zakyrjanova, G. F., Kravtsova, V. V., and Krivoi, I. I. (2018) Early endplate remodeling and skeletal muscle signaling events following rat hindlimb suspension, J. Cell. Physiol., 233, 6329–6336, doi:  https://doi.org/10.1002/jcp.26594.CrossRefGoogle Scholar
  23. 23.
    Hardie, D. G., Schaffer, B. E., and Brunet, A. (2016) AMPK: an energy-sensing pathway with multiple inputs and outputs, Trends Cell Biol., 26, 190–201, doi:  https://doi.org/10.1016/j.tcb.2015.10.013.CrossRefGoogle Scholar
  24. 24.
    Ingwersen, M. S., Kristensen, M., Pilegaard, H., Wojtaszewski, J. F., Richter, E. A., and Juel, C. (2011) Na,K-ATPase activity in mouse muscle is regulated by AMPK and PGC-1α, J. Membr. Biol., 242, 1–10, doi:  https://doi.org/10.1007/s00232-011-9365-7.CrossRefGoogle Scholar
  25. 25.
    Benziane, B., Bjornholm, M., Pirkmajer, S., Austin, R. L., Kotova, O., Viollet, B., Zierath, J. R., and Chibalin, A. V. (2012) Activation of AMP-activated protein kinase stimulates Na+,K+-ATPase activity in skeletal muscle cells, J. Biol. Chem., 287, 23451–23463, doi:  https://doi.org/10.1074/jbc.M111.331926.CrossRefGoogle Scholar
  26. 26.
    Cervero, C., Montull, N., Tarabal, O., Piedrafita, L., Esquerda, J. E., and Caldero, J. (2016) Chronic treatment with the AMPK agonist AICAR prevents skeletal muscle pathology but fails to improve clinical outcome in a mouse model of severe spinal muscular atrophy, Neurotherapeutics, 13, 198–216, doi:  https://doi.org/10.1007/s13311-015-0399-x.CrossRefGoogle Scholar
  27. 27.
    Morey-Holton, E., Globus, R. K., Kaplansky, A., and Durnova, G. (2005) The hindlimb unloading rat model: literature overview, technique update and comparison with space flight data, Adv. Space Biol. Med., 10, 7–40.CrossRefGoogle Scholar
  28. 28.
    Petrov, A. M., Kravtsova, V. V., Matchkov, V. V., Vasiliev, A. N., Zefirov, A. L., Chibalin, A. V., Heiny, J. A., and Krivoi, I. I. (2017) Membrane lipid rafts are disturbed in the response of rat skeletal muscle to short-term disuse, Am. J. Physiol. Cell Physiol., 312, C627–C637, doi:  https://doi.org/10.1152/ajpcell.00365.2016.CrossRefGoogle Scholar
  29. 29.
    Kuntzweiler, T. A., Arguello, J. M., and Lingrel, J. B. (1996) Asp804 and Asp808 in the transmembrane domain of the Na,K-ATPase a subunit are cation coordinating residues, J. Biol. Chem., 271, 29682–29687, doi:  https://doi.org/10.1074/jbc.271.47.29682.CrossRefGoogle Scholar
  30. 30.
    Reines, A., Peaa, C., and Rodriguez de Lores Arnaiz, G. (2000) Kinetics of Na+,K+-ATPase inhibition by an endogenous modulator (II-A), Neurochem. Res., 25, 121–127.CrossRefGoogle Scholar
  31. 31.
    Matyushkin, D. P., Krivoi, I. I., and Drabkina, T. M. (1995) Synaptic feed-backs mediated by potassium ions, Gen. Physiol. Biophys., 14, 369–381.Google Scholar
  32. 32.
    Tverskoi, A. M., Sidorenko, S. V., Klimanova, E. A., Akimova, O. A., Smolyaninova, L. V., Lopina, O. D., and Orlov, S. N. (2016) Effects of ouabain on proliferation of human endothelial cells correlate with Na+,K+-ATPase activity and intracellular ratio of Na+ and K+, Biochemistry (Moscow), 81, 876–883, doi:  https://doi.org/10.1134/S0006297916080083.CrossRefGoogle Scholar
  33. 33.
    Kotova, O., Al-Khalili, L., Talia, S., Hooke, C., Fedorova, O. V., Bagrov, A. Y., and Chibalin, A. V. (2006) Cardiotonic steroids stimulate glycogen synthesis in human skeletal muscle cells via a Src- and ERK1/2-dependent mechanism, J. Biol. Chem., 281, 20085–20094, doi:  https://doi.org/10.1074/jbc.M601577200.CrossRefGoogle Scholar
  34. 34.
    Cherniavsky-Lev, M., Golani, O., Karlish, S. J., and Garty, H. (2014) Ouabain-induced internalization and lysosomal degradation of the Na+/K+-ATPase, J. Biol. Chem., 289, 1049–1059, doi:  https://doi.org/10.1074/jbc.M113.517003.CrossRefGoogle Scholar
  35. 35.
    Orlov, S. N., Klimanova, E. A., Tverskoi, A. M., Vladychenskaya, E. A., Smolyaninova, L. V., and Lopina, O. D. (2017) Na+ i,K+ i-dependent and -independent signaling triggered by cardiotonic steroids: facts and artifacts, Molecules, 22, 635, doi:  https://doi.org/10.3390/molecules22040635.CrossRefGoogle Scholar
  36. 36.
    Cornelius, F., and Mahmmoud, Y. A. (2009) Interaction between cardiotonic steroids and Na,K-ATPase. Effects of pH and ouabain-induced changes in enzyme conformation, Biochemistry, 48, 10056–10065, doi:  https://doi.org/10.1021/bi901212r.CrossRefGoogle Scholar
  37. 37.
    Lopachev, A. V., Lopacheva, O. M., Nikiforova, K. A., Filimonov, I. S., Fedorova, T. N., and Akkuratov, E. E. (2018) Comparative action of cardiotonic steroids on intracellular processes in rat cortical neurons, Biochemistry (Moscow), 83, 140–151, doi:  https://doi.org/10.1134/S0006297918020062.CrossRefGoogle Scholar
  38. 38.
    Altamirano, F., Eltit, J. M., Robin, G., Linares, N., Ding, X., Pessah, I. N., Allen, P. D., and Lopez, J. R. (2014) Ca2+ influx via the Na+/Ca2+ exchanger is enhanced in malignant hyperthermia skeletal muscle, J. Biol. Chem., 289, 19180–19190, doi:  https://doi.org/10.1074/jbc.M114.550764.CrossRefGoogle Scholar
  39. 39.
    Vilchinskaya, N. A., Mirzoev, T. M., Lomonosova, Y. N., Kozlovskaya, I. B., and Shenkman, B. S. (2015) Human muscle signaling responses to 3-day head-out dry immersion, J. Musculoskelet. Neuronal Interact., 15, 286–293.Google Scholar
  40. 40.
    Ruegsegger, G. N., Sevage, J. A., Childs, T. E., Grigsby, K. B., and Booth, F. W. (2017) 5-Aminoimidazole-4-carboxamide ribonucleotide prevents fat gain following the cessation of voluntary physical activity, Exp. Physiol., 102, 1474–1485, doi:  https://doi.org/10.1113/EP086335.CrossRefGoogle Scholar
  41. 41.
    Kjobsted, R., Treebak, J. T., Fentz, J., Lantier, L., Viollet, B., Birk, J. B., Schjerling, P., Bjornholm, M., Zierath, J. R., and Wojtaszewski, J. F. (2015) Prior AICAR stimulation increases insulin sensitivity in mouse skeletal muscle in an AMPK-dependent manner, Diabetes, 64, 2042–2055, doi:  https://doi.org/10.2337/db14-1402.CrossRefGoogle Scholar
  42. 42.
    Meley, D., Bauvy, C., Houben-Weerts, J. H., Dubbelhuis, P. F., Helmond, M. T., Codogno, P., and Meijer, A. J. (2006) AMP-activated protein kinase and the regulation of autophagic proteolysis, J. Biol. Chem., 281, 34870–34879.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • V. V. Kravtsova
    • 1
  • N. A. Vilchinskaya
    • 2
  • V. L. Rozlomii
    • 1
  • B. S. Shenkman
    • 2
  • I. I. Krivoi
    • 1
    Email author
  1. 1.St. Petersburg State University, Department of General PhysiologySt. PetersburgRussia
  2. 2.Institute of Biomedical Problems, Laboratory of MyologyRussian Academy of SciencesMoscowRussia

Personalised recommendations