Biochemistry (Moscow)

, Volume 84, Issue 9, pp 1065–1073 | Cite as

Comparison of State Transitions of the Photosynthetic Antennae in Arabidopsis and Barley Plants upon Illumination with Light of Various Intensity

  • D. V. Vetoshkina
  • M. A. Kozuleva
  • V. V. Terentyev
  • E. M. Zhurikova
  • M. M. Borisova-Mubarakshina
  • B. N. IvanovEmail author


Changes in the light energy distribution between the photosystems 1 and 2 (PS1 and PS2, respectively) due to the reversible migration of a part of the light-harvesting complex (LHC2) between the photosystems (state transitions, ST) have been studied in leaves of barley (Hordeum vulgare) and Arabidopsis thaliana plants upon short-term illumination with light of various intensity that excited predominantly PS2. Changes in the ratio of fluorescence maxima at 745 and 685 nm in the low-temperature (77 K) fluorescence spectrum of chlorophyll a (Chl a) characterizing energy absorption by the PS1 and PS2, respectively, were insufficient for revealing the differences in the STs in barley and Arabidopsis plants at various light intensities, because they were not associated with STs at high-intensity illumination. Light-induced accumulation of the LHC2 phosphorylated proteins Lhcb1 and Lhcb2 involved in the relocation of a part of the LHC2 from PS2 to PS1 in the leaves of both plants decreased with the increase in the light intensity and was more pronounced in barley than in Arabidopsis at the same light intensity. Relaxation of the non-photochemical quenching (NPQ) of Chl a fluorescence after illumination corresponding to the return of the part of LHC2 from PS1 to PS2 was observed in barley leaves in a wider range of increasing light intensities than in Arabidopsis leaves. The differences in the accumulation of phosphorylated Lhcb1 and Lhcb2, as well as in the parameters of NPQ relaxation after illumination, revealed that STs in barley leaves could occur not only at low- but also at high-intensity light, when it is absent in Arabidopsis leaves.


Arabidopsis barley photosynthesis phosphorylation of antenna proteins chlorophyll a fluorescence 


At-WT and At-stn7

wild-type and STN7 kinase knockout Arabidopsis plants, respectively




barley leaves incubated in NaF solution or water, respectively


light-harvesting complex


non-photochemical fluorescence quenching


photosynthetic electron transport chain


photosystem 1(2)


state 1(2)


state transition


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors are grateful to Prof. Dario Leister (Ludwig-Maximilians-Universität, München) for providing seeds of Arabidopsis mutant plants lacking STN7 kinase.

Funding. This work was supported by the Russian Science Foundation (projects 17-14-01371 and 17-76-10058).

Ethical approval. This article does not contain any studies with human participants or animals performed by any of the authors.


  1. 1.
    Rochaix, J.-D., Lemeille, S., Shapiguzov, A., Samol, I., Fucile, G., Willig, A., and Goldschmidt-Clermont, M. (2012) Protein kinases and phosphatases involved in the acclimation of the photosynthetic apparatus to a changing light environment, Philos. Trans. R Soc. Lond. B Biol. Sci., 367, 3466–3474; doi: Scholar
  2. 2.
    Allen, J. F. (2003) Botany. State transitions — a question of balance, Science, 299, 1530–1532; doi: Scholar
  3. 3.
    Pribil, M., Pesaresi, P., Hertle, A., Barbato, R., and Leister, D. (2010) Role of plastid protein phosphatase TAP38 in LHC2 dephosphorylation and thylakoid electron flow, PLoS Biol., 8, e1000288; doi: Scholar
  4. 4.
    Shapiguzov, A., Ingelsson, B., Samol, I., Andres, C., Kessler, F., Rochaix, J.-D., Vener, A. V., and Goldschmidt-Clermont, M. (2010) The PPH1 phosphatase is specifically involved in LHCII dephosphorylation and state transitions in Arabidopsis, Proc. Natl. Acad. Sci. USA, 107, 4782–4787; doi: Scholar
  5. 5.
    McCormac, D. J., Bruce, D., and Greenberg, B. M. (1994) State transitions, light-harvesting antenna phosphorylation and light-harvesting antenna migration in vivo in the higher plant Spirodela oligorrhiza, Biochim. Biophys. Acta Bioenerg., 1187, 301–312; doi: Scholar
  6. 6.
    Bennett, J. (1979) Chloroplast phosphoproteins. The protein kinase of thylakoid membranes is light-dependent, FEBS Lett., 103, 342–344; doi: Scholar
  7. 7.
    Niyogi, K. K., Grossman, A. R., and Bjorkman, O. (1998) Arabidopsis mutants define a central role for the xanthophyll cycle in the regulation of photosynthetic energy conversion, Plant Cell, 10, 1121–1134; doi: Scholar
  8. 8.
    Cazzaniga, S., Dall’Osto, L., Kong, S. G., Wada, M., and Bassi, R. (2013) Interaction between avoidance of photon absorption, excess energy dissipation and zeaxanthin synthesis against photooxidative stress in Arabidopsis, Plant J., 76, 568–579; doi: Scholar
  9. 9.
    Nilkens, M., Kress, E., Lambrev, P., Miloslavina, Y., Muller, M., Holzwarth, A. R., and Jahns, P. (2010) Identification of a slowly inducible zeaxanthin-dependent component of non-photochemical quenching of chlorophyll fluorescence generated under steady-state conditions in Arabidopsis, Biochim. Biophys. Acta Bioenerg., 1797, 466–475; doi: Scholar
  10. 10.
    Tikkanen, M., Piippo, M., Suorsa, M., Sirpio, S., Mulo, P., Vainonen, J., Vener, A., Allahverdiyeva, Ya., and Aro, E. M. (2006) State transitions revisited — a buffering system for dynamic low light acclimation of Arabidopsis, Plant Mol. Biol., 62, 779–793; doi: Scholar
  11. 11.
    Fernyhough, P., Horton, P., and Foyer, C. (1984) in Advances in Photosynthesis Research, Springer, Dordrecht, pp. 299–302; doi: Scholar
  12. 12.
    Demmig, B., Cleland, R. E., and Bjorkman, O. (1987) Photoinhibition, 77 K chlorophyll fluorescence quenching and phosphorylation of the light-harvesting chlorophyll-protein complex of photosystem II in soybean leaves, Planta, 172, 378–385; doi: Scholar
  13. 13.
    Horton, P., and Hague, A. (1988) Studies on the induction of chlorophyll fluorescence in isolated barley protoplasts. IV. Resolution of non-photochemical quenching, Biochim. Biophys. Acta Bioenerg., 932, 107–115; doi: Scholar
  14. 14.
    Rintamaki, E., Salonen, M., Suoranta, U. M., Carlberg, I., Andersson, B., and Aro, E. M. (1997) Phosphorylation of light-harvesting complex II and photosystem II core proteins shows different irradiance-dependent regulation in vivo. Application of phosphothreonine antibodies to analysis of thylakoid phosphoproteins, J. Biol. Chem., 272, 30476–30482; doi: Scholar
  15. 15.
    Chuartzman, S. G., Nevo, R., Shimoni, E., Charuvi, D., Kiss, V., Ohad, I., Brumfeld, V., and Reich, Z. (2008) Thylakoid membrane remodeling during state transitions in Arabidopsis, Plant Cell, 20, 1029–1039; doi: Scholar
  16. 16.
    Leoni, C., Pietrzykowska, M., Kiss, A. Z., Suorsa, M., Ceci, L. R., Aro, E. M., and Jansson, S. (2013) Very rapid phosphorylation kinetics suggest a unique role for Lhcb2 during state transitions in Arabidopsis, Plant J., 76, 236–246; doi: Scholar
  17. 17.
    Ignatova, L. K., Rudenko, N. N., Mudrik, V. A., and Ivanov, B. N. (2011) Carbonic anhydrase activity in Arabidopsis thaliana thylakoid membrane and fragments enriched with PSI or PSII, Photosynth. Res., 110, 89–98; doi: Scholar
  18. 18.
    Mekala, N. R., Suorsa, M., Rantala, M., Aro, E. M., and Tikkanen, M. (2015) Plants actively avoid state transitions upon changes in light intensity: role of light-harvesting complex II protein dephosphorylation in high light, Plant Physiol., 168, 721–734; doi: Scholar
  19. 19.
    Trotta, A., Suorsa, M., Rantala, M., Lundin, B., and Aro, E. M. (2016) Serine and threonine residues of plant STN7 kinase are differentially phosphorylated upon changing light conditions and specifically influence the activity and stability of the kinase, Plant J., 87, 484–494; doi: Scholar
  20. 20.
    Damkjaer, J. T., Kereiche, S., Johnson, M. P., Kovacs, L., Kiss, A. Z., Boekema, E. J., Ruban, A. V., Horton, P., and Jansson, S. (2009) The photosystem II light-harvesting protein Lhcb3 affects the macrostructure of photosystem II and the rate of state transitions in Arabidopsis, Plant Cell, 21, 3245–3256; doi: Scholar
  21. 21.
    Tikkanen, M., Grieco, M., Kangasjärvi, S., and Aro, E. M. (2010) Thylakoid protein phosphorylation in higher plant chloroplasts optimizes electron transfer under fluctuating light, Plant Physiol., 152, 723–735; doi: Scholar
  22. 22.
    Wientjes, E., van Amerongen, H., and Croce, R. (2013) LHCII is an antenna of both photosystems after long-term acclimation, Biochim. Biophys. Acta Bioenerg., 1827, 420–426; doi: Scholar
  23. 23.
    Zhang, S., and Scheller, H. V. (2004) Light-harvesting complex II binds to several small subunits of photosystem I, J. Biol. Chem., 279, 3180–3187; doi: Scholar
  24. 24.
    Osmond, C. B. (1981) Photorespiration and photoinhibition: some implications for the energetics of photosynthesis, Biochim. Biophys. Acta Bioenerg., 639, 77–98; doi: Scholar
  25. 25.
    Shmeleva, V. L., Ivanov, B. N., Pigulevskaya, T. K., and Chernavina, I. A. (1984) Electron transport and phosphorylation in chloroplasts from oat grown under excess of zinc in the growth medium, Fiziol. Biokhim. Kult. Rast., 16, 31–37.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • D. V. Vetoshkina
    • 1
  • M. A. Kozuleva
    • 1
  • V. V. Terentyev
    • 1
  • E. M. Zhurikova
    • 1
  • M. M. Borisova-Mubarakshina
    • 1
  • B. N. Ivanov
    • 1
    Email author
  1. 1.Institute of Basic Biological Problems, Pushchino Scientific Center for Biological ResearchRussian Academy of SciencesPushchino, Moscow RegionRussia

Personalised recommendations