Advertisement

Biochemistry (Moscow)

, Volume 84, Issue 9, pp 1057–1064 | Cite as

Electron Transfer on the Donor Side of Manganese-Depleted Photosystem 2

  • L. A. Vitukhnovskaya
  • E. V. Fedorenko
  • M. D. MamedovEmail author
Article
  • 1 Downloads

Abstract

After removal of manganese ions responsible for light-driven water oxidation, redox-active tyrosine YZ (tyrosine 161 of the D1 subunit) still remains the dominant electron donor to the photooxidized chlorophyll P680 (\({\rm{P}}_{680}^+\)) in the reaction center of photosystem 2 (PS2). Here, we investigated \({\rm{P}}_{680}^+\) reduction by YZ under single-turnover flashes in Mn-depleted PS2 core complexes in the presence of weak acids and NH4Cl. Analysis of changes in the light-induced absorption at 830 nm (reflecting P680 redox transitions) at pH 6.0 showed that \({\rm{P}}_{680}^+\) reduction is well approximated by two kinetic components with the characteristic times (τ) of ~7 and ~31 μs and relative contributions of ~54 and ~37%, respectively. In con-trast to the very small effect of sodium formate (200 mM), addition of sodium acetate and NH4Cl increased the rate of electron transfer between YZ and \({\rm{P}}_{680}^+\) approx. by a factor of 5. The suggestion that direct electron transfer from YZ to \({\rm{P}}_{680}^+\) has a biphasic kinetics and reflects the presence of two different populations of PS2 centers was confirmed by the data obtained using direct electrometrical technique. It was demonstrated that the submillisecond two-phase kinetics of the additional electrogenic phase in the kinetics of photoelectric response due to the electron transfer between YZ and \({\rm{P}}_{680}^+\) is significantly accelerated in the presence of acetate or ammonia. These results contribute to the understanding of the mechanism of inter-action between the oxidized tyrosine YZ and exogenous substances (including synthetic manganese-containing compounds) capable of photooxidation of water molecule in the manganese-depleted PS2 complexes.

Keywords

photosystem 2 reaction center apo-PS2 absorption changes photoelectric response acetate ammonia 

Abbreviations

ΔΨ

transmembrane electric potential

τ

characteristic time

apo-PS2

Mn-depleted PS2 complexes

Chl

chlorophyll

PS2

photosystem 2

QA

primary quinone acceptor

RC

reaction center

WOC

water-oxidizing complex

YZ

tyrosine 161 of the D1 subunit

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The authors are grateful to A. Yu. Semenov for critical discussion.

Funding. This work was supported by the Russian Science Foundation (project 17-14-01323) and the Russian Foundation for Basic Research (project AAAA-A19-119012990175-9) within the framework of the State Assignment “Chemical and Physical Mechanisms of Interaction of Intense Laser Radiation with Biological Systems”.

Ethical approval. This article does not contain any studies with human participants or animals performed by any of the authors.

References

  1. 1.
    Ferreira, K. N., Iverson, T. M., Maghlaoui, K., Barber, J., and Iwata, S. (2004) Architecture of the photosynthetic oxygen-evolving center, Science, 303, 1831–1838; doi:  https://doi.org/10.1126/science.1093087.CrossRefGoogle Scholar
  2. 2.
    Guskov, A., Kern, J., Gabdulkhakov, A., Broser, M., Zouni, A., and Saenger, W. (2009) Cyanobacterial photosystem II at 2.9-Å resolution and the role of quinones, lipids, channels and chloride, Nat. Struct. Mol. Biol., 16, 334–342; doi:  https://doi.org/10.1038/nsmb.1559.CrossRefGoogle Scholar
  3. 3.
    Umena, Y., Kawakami, K., Shen, J.-R., and Kamiya, N. (2011) Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9 Å, Nature, 473, 55–60; doi:  https://doi.org/10.1038/nature09913..CrossRefGoogle Scholar
  4. 4.
    Tommos, C., and Babcock, G. T. (2000) Proton and hydrogen currents in photosynthetic water oxidation, Biochim. Biophys. Acta, 1458, 199–219; doi:  https://doi.org/10.1016/S0005-2728(00)00069-4..CrossRefGoogle Scholar
  5. 5.
    Renger, G. (2004) Coupling of electron and proton transfer in oxidative water cleavage in photosynthesis, Biochim. Biophys. Acta, 1655, 195–204; doi:  https://doi.org/10.1016/j.bbabio..2003.07.007Get.CrossRefGoogle Scholar
  6. 6.
    Styring, S., Sjoholm, J., and Mamedov, F. (2012) Two tyrosines that changed the world: interfacing the oxidizing power of photochemistry to water splitting in photosystem II, Biochim. Biophys. Acta, 1817, 76–87; doi:  https://doi.org/10.1016/j.bbabio.2011.03.016..CrossRefGoogle Scholar
  7. 7.
    Hays, A. M., Vassiliev, I. R., Golbeck, J. H., and Debus, R. J. (1999) Role of D1-His190 in the proton-coupled oxidation of tyrosine YZ in manganese-depleted photosystem II, Biochemistry, 38, 11851–11865; doi:  https://doi.org/10.1021/bi990716a..CrossRefGoogle Scholar
  8. 8.
    Babcock, G. T., and Sayer, K. (1975) A rapid, light-induced transient in electron paramagnetic resonance signal II activated upon inhibition of photosynthetic oxygen evolution, Biochim. Biophys. Acta, 376, 315–328; doi:  https://doi.org/10.1016/0005-2728(75)90024-9..CrossRefGoogle Scholar
  9. 9.
    Conjeaud, H., and Mathis, P. (1980) The effects of pH on the reductions kinetics of P-680 in Tris-treated chloroplasts, Biochim. Biophys. Acta, 590, 353–359; doi:  https://doi.org/10.1016/0005-.2728(80)90206-6.CrossRefGoogle Scholar
  10. 10.
    Buser, C. A., Thompson, L. K., Diner, B. A., and Brudvig, G. W. (1990) Electron-transfer reactions in manganese-depleted photosystem II, Biochemistry, 29, 8977–8985; doi:  https://doi.org/10.1021/bi00490a014..CrossRefGoogle Scholar
  11. 11.
    Krieger, A., Rutherford, A. W., and Johnson, G. N. (1995) On the determination of redox midpoint potential of the primary quinone electron acceptor, QA, in photosystem II, Biochim. Biophys. Acta, 1229, 193–201; doi:  https://doi.org/10.1016/0005-2728(95)00002-Z..CrossRefGoogle Scholar
  12. 12.
    Shibamoto, T., Kato, Y., Sugiura, M., and Watanabe, T. (2009) Redox potential of the primary plastoquinone electron acceptor QA in photosystem II from Thermosynechococcus elongatus determined by spectroelectrochemistry, Biochemistry, 48, 10682–10684; doi:  https://doi.org/10.1021/bi901691j..CrossRefGoogle Scholar
  13. 13.
    Ido, K., Gross, G. M., Guerrero, F., Sedoud, A., Lai, T. L., Ifuku, K., Rutherford, A. W., and Krieger-Liszkay, A. (2011) High and low potential forms of the QA quinone electron acceptor in photosystem II of Thermosynechococcus elongatus and spinach, J. Photochem. Photobiol. B, 104, 154–157; doi:  https://doi.org/10.1016/j.jphotobiol.2011.02.010..CrossRefGoogle Scholar
  14. 14.
    Allakhverdiev, S. I., Tsuchiya, T., Watabe, K., Kojima, A., Los, D. A., Tomo, T., Klimov, V. V., and Mimuro, M. (2011) Redox potentials of primary electron acceptor quinone molecule (Q-A) and conserved energetics of photosystem II in cyanobacteria with chlorophyll a and chlorophyll d, Proc. Natl. Acad. Sci. USA, 108, 8054–8058; doi:  https://doi.org/10.1073/pnas.1100173108..CrossRefGoogle Scholar
  15. 15.
    Drachev, L. A., Jasaitis, A. A., Kaulen, A. D., Kondrashin, A. A., Liberman, E. A., Nemecek, I. B., Ostroumov, S. A., Semenov, A. Y., and Skulachev, V. P. (1974) Direct measurement of electric current generation by cytochrome oxidase, H+-ATPase and bacteriorhodopsin, Nature, 249, 321–324; doi:  https://doi.org/10.1038/249321a0..CrossRefGoogle Scholar
  16. 16.
    Drachev, L. A., Kaulen, A. D., Semenov, A. Yu., Severina, I. I., and Skulachev, V. P. (1979) Lipid-impregnated filters as a tool for studying the electric current-generating proteins, Anal. Biochem., 96, 250–262; doi:  https://doi.org/10.1016/0003-2697(79)90580-3..CrossRefGoogle Scholar
  17. 17.
    Haag, E., Irrgang, K.-D., Boekema, E. J., and Renger, G. (1990) Functional and structural analysis of photosystem II core complexes from spinach with high oxygen evolution capacity, Eur. J. Biochem., 189, 47–53; doi:  https://doi.org/10.1111/j.1432-1033.1990.tb15458.x..CrossRefGoogle Scholar
  18. 18.
    Gopta, O. A., Tyunyatkina, A. A., Kurashov, V. N., Semenov, A. Y., and Mamedov, M. D. (2008) Effect of redox mediators on the flash-induced membrane potential generation in Mn-depleted photosystem II core particles, Eur. Biophys. J., 37, 1045–1050; doi:  https://doi.org/10.1007/s00249-007-0231-6..CrossRefGoogle Scholar
  19. 19.
    Kalaidzidis, Ya. L., Gavrilov, A. V., Zaitsev, P. V., Kalaidzidis, A. L., and Korolev, E. V. (1997) PLUK — an environment for software development, Program Comput. Softw., 23, 206–212.Google Scholar
  20. 20.
    Kaminskaya, O., Kurreck, J., Irrgang, K. D., Renger, G., and Shuvalov, V. A. (1999) Redox and spectral properties of cytochrome b 559 in different preparations of photosystem II, Biochemistry, 38, 16223–16235; doi:  https://doi.org/10.1007/s00249-015-1082-1..CrossRefGoogle Scholar
  21. 21.
    Van Best, J. A., and Mathis, P. (1978) Apparatus for the measurement of small absorption change kinetics at 820 nm in the nanosecond range after a ruby laser flash, Rev. Sci. Instrum., 49, 1332; doi:  https://doi.org/10.1063/1.1135579..CrossRefGoogle Scholar
  22. 22.
    Renger, G., Volker, M., and Weiss, W. (1984) Studies on the nature of the water-oxidizing enzyme. I. The effect of trypsin on the system II reaction pattern in inside-out thylakoids, Biochim. Biophys. Acta, 766, 582–591; doi:  https://doi.org/10.1016/0005-2728(84)90118-X..CrossRefGoogle Scholar
  23. 23.
    Gadjieva, R., Eckert, H.-J., and Renger, G. (2000) Photoinhibition as a function of the ambient redox potential in Tris-washed PS II membrane fragments, Photosynth. Res., 63, 237–248; doi:  https://doi.org/10.1023/A:1006427408083..CrossRefGoogle Scholar
  24. 24.
    Semenov, A., Cherepanov, D., and Mamedov, M. (2008) Electrogenic reactions and dielectric properties of photosystem II, Photosynth. Res., 98, 121–130; doi:  https://doi.org/10.1007/s11120-008-.9377-z.CrossRefGoogle Scholar
  25. 25.
    Tsuno, M., Suzuki, H., Kondo, T., Mino, H., and Noguchi, T. (2011) Interaction and inhibitory effect of ammonium cation in the oxygen evolving center of photosystem II, Biochemistry, 50, 2506–2514; doi:  https://doi.org/10.1021/bi101952g..CrossRefGoogle Scholar
  26. 26.
    Lovyagina, E. R., and Semin, B. K. (2016) Mechanism of inhibition and decoupling of oxygen evolution from electron transfer in photosystem II by fluoride, ammonia and acetate, J. Photochem. Photobiol. B, 158, 145–153; doi:  https://doi.org/10.1016/j.jphotobiol.2016.02.031..CrossRefGoogle Scholar
  27. 27.
    Haumann, M., Mulkidjanian, A., and Junge, W. (1997) Electrogenicity of electron and proton transfer at the oxidizing side of photosystem II, Biochemistry, 36, 9304–9315; doi:  https://doi.org/10.1021/bi963114p..CrossRefGoogle Scholar
  28. 28.
    Mamedov, M. D., Kurashov, V. N., Cherepanov, D. A., and Semenov, A. Yu. (2010) Photosystem II: where does the light-induced voltage come from? Front. Biosci., 15, 1007–1017; doi:  https://doi.org/10.2741/3658..CrossRefGoogle Scholar
  29. 29.
    Petrova, I. O., Kurashov, V. N., Semenov, A. Yu., and Mamedov, M. D. (2011) Mn-depleted/reconstituted photosystem II core complexes in solution and liposomes, J. Photochem. Photobiol. B, 104, 372–376; doi:  https://doi.org/10.1016/j.jphotobiol.2011.03.004..CrossRefGoogle Scholar
  30. 30.
    Zhang, M., Bommer, M., Chatterjee, R., Hussein, R., Yano, J., Dau, H., Kern, J., Dobbek, H., and Zouni, A. (2017) Structural insights into the light-driven autoassembly process of the water-oxidizing Mn4CaO5-cluster in photosystem II, eLife, 6, e26933; doi:  https://doi.org/10.7554/eLife.26933..CrossRefGoogle Scholar
  31. 31.
    Shevela, D., Klimov, V., and Messinger, J. (2007) Interactions of photosystem II with bicarbonate, formate and acetate, Photosynth. Res., 94, 247–264; doi:  https://doi.org/10.1007/s11120-.007-9200-2.CrossRefGoogle Scholar
  32. 32.
    Clemens, K. L., Force, D. A., and Britt, R. D. (2002) Acetate binding at the photosystem II oxygen-evolving complex: an S2-state multiline signal ESEEM study, J. Am. Chem. Soc., 124, 10921–10933; doi:  https://doi.org/10.1021/ja012036c..CrossRefGoogle Scholar
  33. 33.
    Hou, L.-H., Wu, C.-M., Huang, H.-H., and Chu, H.-A. (2011) Effects of ammonia on the structure of the oxygen-evolving complex in photosystem II as revealed by light-induced FTIR difference spectroscopy, Biochemistry, 50, 9248–9254; doi:  https://doi.org/10.1021/bi200943q..CrossRefGoogle Scholar
  34. 34.
    Marchiori, D. A., Oyala, P. H., Debus, R. J., Stich, T. A., and Britt, R. D. (2018) Structural effects of ammonia binding to the Mn4CaO5 cluster of photosystem II, J. Phys. Chem. B, 122, 1588–1599; doi:  https://doi.org/10.1021/acs.jpcb.7b11101..CrossRefGoogle Scholar
  35. 35.
    Gerhard, V. (1980) The effect on ammonium chloride on the kinetics of the back reaction of photosystem II in Chlorella fusca and in chloroplasts in the presence of 3-(3,4-dichlorophenyl)-1,1-dimethylurea, Z. Naturforsch., 35, 451–460; doi:  https://doi.org/10.1515/znc-1980-5-616..CrossRefGoogle Scholar
  36. 36.
    Kleiner, D. (1981) The transport of NH3 and NH4 + across biological membranes, Biochim. Biophys. Acta, 639, 41–52; doi:  https://doi.org/10.1016/0304-4173(81)90004-5..CrossRefGoogle Scholar
  37. 37.
    Hienerwadel, R., Gourion-Arsiquaud, S., Ballottari, M., Bassi, R., Diner, B. A., and Berthomieu, C. (2005) Formate binding near the redox-active tyrosine D in photosystem II: consequences on the properties of tyrD, Photosynth. Res., 84, 139–144; doi:  https://doi.org/10.1007/s11120-005-0637-x.CrossRefGoogle Scholar
  38. 38.
    Kawamoto, K., Mano, J., and Asada, K. (1995) Photoproduction of the azidyl radical from the azide anion on the oxidizing side of photosystem II and suppression of photooxidation of tyrosine Z by the azidyl radical, Plant Cell Physiol., 36, 1121–1129; doi:  https://doi.org/10.1093/oxfordjournals.pcp.a078856.CrossRefGoogle Scholar
  39. 39.
    Force, D. A., Randall, D. W., Britt, R. D., Tang, X. S., and Diner, B. A. (1995) 2H ESE-ENDOR study of hydrogen bonding to the tyrosine radicals \({\rm{Y}}_{\rm{D}}^\bullet\;{\rm{and}}\;{\rm{Y}}_{\rm{Z}}^\bullet\) of photosystem II, J. Am. Chem. Soc., 117, 10547–10554; doi:  https://doi.org/10.1021/ja00155a032.CrossRefGoogle Scholar
  40. 40.
    Tommos, C., Tang, X. S., Warncke, K., Hoganson, C. W., Styring, S., McCracken, J., Diner, B. A., and Babcock, G. T. (1995) Spin-density distribution, conformation, and hydrogen bonding of the redox-active tyrosine YZ in photosystem II from multiple-electron magnetic-resonance spectroscopies: implications for photosynthetic oxygen evolution, J. Am. Chem. Soc., 117, 10325–10335; doi:  https://doi.org/10.1021/ja00146a017..CrossRefGoogle Scholar
  41. 41.
    Hays, A. M., Vassiliev, I. R., Golbeck, J. H., and Debus, R. J. (1998) Role of D1-His190 in proton-coupled electron transfer reactions in photosystem II: a chemical complementation study, Biochemistry, 37, 11352–11365; doi:  https://doi.org/10.1021/bi980510u..CrossRefGoogle Scholar
  42. 42.
    Berthomieu, C., Hienerwadel, R., Boussac, A., Breton, J., and Diner, B. (1998) Hydrogen bonding of redox-active tyrosine Z of photosystem II probed by FTIR difference spectroscopy, Biochemistry, 37, 10547–10554; doi:  https://doi.org/10.1021/bi980788m..CrossRefGoogle Scholar
  43. 43.
    Diner, B. A., Force, D. A., Randall, D. W., and Britt, R. D. (1998) Hydrogen bonding, solvent exchange, and coupled proton and electron transfer in the oxidation and reduction of redox-active tyrosine YZ in Mn-depleted core complexes of photosystem II, Biochemistry, 37, 17931–17943; doi:  https://doi.org/10.1021/bi981894r.CrossRefGoogle Scholar
  44. 44.
    Campell, K. A., Peloquin, J. M., Diner, B. A., Tang, X. S., Chisholm, D. A., and Britt, R. D. (1997) The τ-nitrogen of D2 histidine 189 is the hydrogen bond donor to the tyrosine radical \({\rm{Y}}_{\rm{D}}^\bullet\) of photosystem II, J. Am. Chem. Soc., 119, 4787–4788; doi:  https://doi.org/10.1021/ja9706155.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • L. A. Vitukhnovskaya
    • 1
    • 2
  • E. V. Fedorenko
    • 3
  • M. D. Mamedov
    • 1
    Email author
  1. 1.Belozersky Institute of Physico-Chemical BiologyLomonosov Moscow State UniversityMoscowRussia
  2. 2.Semenov Institute of Chemical PhysicsRussian Academy of SciencesMoscowRussia
  3. 3.Moscow Institute of Physics and TechnologyDolgoprudny, Moscow RegionRussia

Personalised recommendations