Advertisement

Biochemistry (Moscow)

, Volume 84, Issue 9, pp 1047–1056 | Cite as

Jasmonic Acid Induces Endoplasmic Reticulum Stress with Different Outcome in Cultured Normal and Tumor Epidermal Cells

  • M. S. VildanovaEmail author
  • A. A. Saidova
  • A. I. Fokin
  • D. M. Potashnikova
  • G. E. Onishchenko
  • E. A. Smirnova
Article
  • 4 Downloads

Abstract

Plant hormones produce cytotoxic effect on human cells and can trigger the processes unrelated to cell death, e.g., biosynthetic system stress. The goal of this study was to investigate activation of the endoplasmic reticulum (ER) stress by jasmonic acid (JA) and to distinguish between the responses of cultured immortalized non-tumorigenic HaCaT cells and epidermoid carcinoma A431 cells to this plant hormone. JA was used in the concentration of 2 mM, as it suppressed cell proliferation in both cell lines. We analyzed expression of genes associated with the activation of ER stress (GRP78, ATF4, CHOP), the structure of the ER and Golgi complex, and synthetic processes in the HaCaT and A431 cell lines. JA induced expression of genes responsible for the activation of ER stress and caused hypertrophic changes in the Golgi complex in both cell lines. However, the patterns of gene expression in the HaCaT and A431 cells were different, and higher levels of involucrin synthesis were observed in A431 but not in HaCaT cells, suggesting that JA activated differentiation of the tumor A431 cells only. Therefore, JA induced ER stress in both cell lines, but the consequences of ER stress were different for the epidermal immortalized non-tumorigenic and tumor cells.

Keywords

plant hormones jasmonic acid ER stress differentiation 

Abbreviations

DAPI

4,6-diamidino-2-phenylindole hydrochlorid

DMSO

dimethyl sulfoxide

DTT

dithiothreitol

ER

endoplasmic reticulum

JA

jasmonic acid

qPCR

real-time polymerase chain reaction

PI

propidium iodide

TEM

transmission electron microscopy

TGN

trans-Golgi network

UPR

unfolded protein response

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Funding. The work was supported by the Russian Foundation for Basic Research (project 19-015-00233) and the Development Program of the Moscow State University (complex FACSAria SORP).

Compliance with ethical standards. This article does not contain any studies involving animals or human participants performed by any of the authors.

References

  1. 1.
    Wasternack, C., and Hause, B. (2013) Jasmonates: biosynthesis, perception, signal transduction and action in plant stress response, growth and development. An update to the 2007 review in Annals of Botany, Ann. Bot., 111, 1021–1058, doi: doi:  https://doi.org/10.1093/aob/mct067.CrossRefGoogle Scholar
  2. 2.
    Song, S., Qi, T., Wasternack, C., and Xie, D. (2014) Jasmonate signaling and crosstalk with gibberellin and ethylene, Curr. Opin. Plant Biol., 21, 112–119, doi:  https://doi.org/10.1016/j.pbi.2014.07.005..CrossRefGoogle Scholar
  3. 3.
    Fingrut, O., and Flescher, E. (2002) Plant stress hormones suppress the proliferation and induce apoptosis in human cancer cells, Leukemia, 16, 608–616, doi:  https://doi.org/10.1038/sj.leu.2402419..CrossRefGoogle Scholar
  4. 4.
    Rotem, R., Heyfets, A., Fingrut, O., Blickstein, D., Shaklai, M., and Flescher, E. (2005) Jasmonates: novel anticancer agents acting directly and selectively on human cancer cell mitochondria, Cancer Res., 65, 1984–1993, doi:  https://doi.org/10.1158/0008-5472.CAN-04-3091..CrossRefGoogle Scholar
  5. 5.
    Li, J., Chen, K., Wang, F., Dai, W., Li, S., Feng, J., Wu, L., Liu, T., Xu, S., Xia, Y., Lu, J., Zhou, Y., Xu, L., and Guo, C. (2017) Methyl jasmonate leads to necrosis and apoptosis in hepatocellular carcinoma cells via inhibition of glycolysis and represses tumor growth in mice, Oncotarget, 8, 45965–45980, doi:  https://doi.org/10.18632/oncotarget.17469..Google Scholar
  6. 6.
    Henriet, E., Jager, S., Tran, C., Bastien, P., Michelet, J. F., Minondo, A. M., Formanek, F., Dalko-Csiba, M., Lortat-Jacob, H., Breton, L., and Vives, R. R. (2017) A jasmonic acid derivative improves skin healing and induces changes in proteoglycan expression and glycosaminoglycan structure, Biochim. Biophys. Acta Gen. Subj., 1861, 2250–2260, doi:  https://doi.org/10.1016/j.bbagen.2017.06.006..CrossRefGoogle Scholar
  7. 7.
    Tsumura, H., Akimoto, M., Kiyota, H., Ishii, Y., Ishikura, H., and Honma, Y. (2009) Gene expression profiles in differentiating leukemia cells induced by methyl jasmonate are similar to those of cytokinins and methyl jasmonate analogs induce the differentiation of human leukemia cells in primary culture, Leukemia, 23, 753–760, doi:  https://doi.org/10.1038/leu.2008.347..CrossRefGoogle Scholar
  8. 8.
    Vildanova, M. S., Savitskaya, M. A., Onishchenko, G. E., and Smirnova, E. A. (2014) Effect of plant hormones on components of the secretory pathway of normal and tumor human cells, Tsitologiya, 56, 516–525.Google Scholar
  9. 9.
    Fu, J., Zhao, L., Wang, L., and Zhu, X. (2015) Expression of markers of endoplasmic reticulum stress-induced apoptosis in the placenta of women with early and late onset severe pre-eclampsia, Taiwan J. Obstet. Gynecol., 54, 19–23, doi:  https://doi.org/10.1016/j.tjog.2014.11.002..CrossRefGoogle Scholar
  10. 10.
    Murugan, D., Lau, Y. S., Lau, C. W., Mustafa, M. R., and Huang, Y. (2015) Angiotensin 1–7 protects against angiotensin II-induced endoplasmic reticulum stress and endothelial dysfunction via Mas receptor, PLoS One, 10, e0145413, doi:  https://doi.org/10.1371/journal.pone.0145413..CrossRefGoogle Scholar
  11. 11.
    Plaisance, V., Brajkovic, S., Tenenbaum, M., Favre, D., Ezanno, H., Bonnefond, A., Bonner, C., Gmyr, V., Kerr-Conte, J., Gauthier, B. R., Widmann, C., Waeber, G., Pattou, F., Froguel, P., and Abderrahmani, A. (2016) Endoplasmic reticulum stress links oxidative stress to impaired pancreatic β-cell function caused by human oxdized LDL, PLoS One, 11, e0163046, doi:  https://doi.org/10.1371/journal.pone.0163046..CrossRefGoogle Scholar
  12. 12.
    Vandesompele, J., De Preter, K., Pattyn, F., Poppe, B., Van Roy, N., De Paepe, A., and Speleman, F. (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes, Genome Biol., 3, doi:  https://doi.org/10.1186/gb-2002-3-7-research0034.
  13. 13.
    Potashnikova, D., Gladkikh, A., and Vorobjev, I. A. (2015) Selection of superior reference genes’ combination for quantitative real-time PCR in B-cell lymphomas, Ann. Clin. Lab. Sci., 45, 64–72.Google Scholar
  14. 14.
    Reynolds, E. S. (1963) The use of lead citrate at high pH as an electron-opaque stain in electron microscopy, J. Cell Biol., 17, 208–212, doi:  https://doi.org/10.1083/jcb.17.1.208..CrossRefGoogle Scholar
  15. 15.
    Mishra, A. R., Zheng, J., Tang, X., and Goering, P. L. (2016) Silver nanoparticle-induced autophagic-lysosomal disruption and NLRP3-inflammasome activation in HepG2 cells is size-dependent, Toxicol. Sci., 150, 473–487, doi:  https://doi.org/10.1093/toxsci/kfw011..CrossRefGoogle Scholar
  16. 16.
    Smith, M., and Wilkinson, S. (2017) ER homeostasis and autophagy, Essays Biochem., 61, 625–635, doi:  https://doi.org/10.1042/EBC20170092..CrossRefGoogle Scholar
  17. 17.
    Matsuzaki, S., Hiratsuka, T., Taniguchi, M., Shingaki, K., Kubo, T., Kiya, K., Fujiwara, T., Kanazawa, S., Kanematsu, R., Maeda, T., Takamura, H., Yamada, K., Miyoshi, K., Hosokawa, K., Tohyama, M., and Katayama, T. (2015) Physiological ER stress mediates the differentiation of fibroblasts, PLoS One, 10, e0123578, doi:  https://doi.org/10.1371/journal.pone.0123578..CrossRefGoogle Scholar
  18. 18.
    Sugiura, K. (2013) Unfolded protein response in keratinocytes: impact on normal and abnormal keratinization, J. Dermatol. Sci., 69, 181–186, doi:  https://doi.org/10.1016/j.jdermsci.2012.12.002..CrossRefGoogle Scholar
  19. 19.
    Chakrabarti, A., Chen, A. W., and Varner, J. D. (2011) A review of the mammalian unfolded protein response, Biotechnol. Bioeng., 108, 2777–2793, doi:  https://doi.org/10.1002/bit.23282..CrossRefGoogle Scholar
  20. 20.
    Rozpedek, W., Pytel, D., Mucha, B., Leszczynska, H., Diehl, J. A., and Majsterek, I. (2016) The role of the PERK/eIF2α/ATF4/CHOP signaling pathway in tumor progression during endoplasmic reticulum stress, Curr. Mol. Med., 16, 533–544.CrossRefGoogle Scholar
  21. 21.
    Celli, A., Mackenzie, D. S., Crumrine, D. S., Tu, C. L., Hupe, M., Bikle, D. D., Elias, P. M., and Mauro, T. M. (2011) Endoplasmic reticulum Ca2+ depletion activates XBP1 and controls terminal differentiation in keratinocytes and epidermis, Br. J. Dermatol., 164, 16–25, doi:  https://doi.org/10.1111/j.1365-2133.2010.10046.x..CrossRefGoogle Scholar
  22. 22.
    Eckhart, L., Lippens, S., Tschachler, E., and Declercq, W. (2013) Cell death by cornification, Biochim. Biophys. Acta, 1833, 3471–3480, doi:  https://doi.org/10.1016/j.bbamcr.2013.06.010..CrossRefGoogle Scholar
  23. 23.
    Rosdy, M., Bernard, B. A., Schmidt, R., and Darmon, M. (1986) Incomplete epidermal differentiation of A431 epidermoid carcinoma cells, In vitro Cell Dev. Biol., 22, 295–300.CrossRefGoogle Scholar
  24. 24.
    Yamazaki, T., Nakano, H., Hayakari, M., Tanaka, M., Mayama, J., and Tsuchida, S. (2004) Differentiation induction of human keratinocytes by phosphatidylethanolamine-binding protein, J. Biol. Chem., 279, 32191–32195, doi:  https://doi.org/10.1074/jbc.M404029200..CrossRefGoogle Scholar
  25. 25.
    Huang, C.-S., Ho, W.-L., Lee, W.-S., Sheu, M.-T., Wang, Y.-J., Tu, S.-H., Chen, R.-J., Chu, J.-S., Chen, L.-C., Lee, C.-H., Tseng, H., Ho, Y.-S., and Wu, C.-H. (2008) SP1-regulated p27/Kip1 gene expression is involved in terbinafine-induced human A431 cancer cell differentiation: an in vitro and in vivo study, Biochem. Pharmacol., 75, 1783–1796, doi:  https://doi.org/10.1016/j.bcp.2008.02.005..CrossRefGoogle Scholar
  26. 26.
    Eckert, R. L., Crish, J. F., Efimova, T., and Balasubramanian, S. (2004) Antioxidants regulate normal human keratinocyte differentiation, Biochem. Pharmacol., 68, 1125–1131, doi:  https://doi.org/10.1016/j.bcp.2004.04.029..CrossRefGoogle Scholar
  27. 27.
    Cohen, S., and Flescher, E. (2009) Methyl jasmonate: a plant stress hormone as an anti-cancer drug, Phytochemistry, 70, 1600–1609, doi:  https://doi.org/10.1016/j.phytochem.2009.06.007..CrossRefGoogle Scholar
  28. 28.
    Rotem, R., Fingrut, O., Moskovitz, J., and Flescher, E. (2003) The anti-cancer plant stress-protein methyl jas-monate induces activation of stress-regulated c-Jun N-ter-minal kinase and p38 protein kinase in human lymphoid cells, Leukemia, 17, 2230–2234, doi:  https://doi.org/10.1038/sj.leu.2403107..CrossRefGoogle Scholar
  29. 29.
    Xiang, X. Y., Yang, X. C., Su, J., Kang, J. S., Wu, Y., Xue, Y. N., Dong, Y. T., and Sun, L. K. (2016) Inhibition of autophagic flux by ROS promotes apoptosis during DTT-induced ER/oxidative stress in HeLa cells, Oncol. Rep., 35, 3471–3479, doi:  https://doi.org/10.3892/or.2016.4725..CrossRefGoogle Scholar
  30. 30.
    Liang, S. H., Zhang, W., McGrath, B. C., Zhang, P., and Cavener, D. R. (2006) PERK (eIF2α kinase) is required to activate the stress-activated MAPKs and induce the expression of immediate-early genes upon disruption of ER calcium homoeostasis, Biochem. J., 393, 201–209, doi:  https://doi.org/10.1042/BJ20050374.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • M. S. Vildanova
    • 1
    Email author
  • A. A. Saidova
    • 1
  • A. I. Fokin
    • 2
  • D. M. Potashnikova
    • 1
  • G. E. Onishchenko
    • 1
  • E. A. Smirnova
    • 1
  1. 1.Lomonosov Moscow State University, Faculty of BiologyMoscowRussia
  2. 2.Belozersky Institute of Physico-Chemical BiologyLomonosov Moscow State UniversityMoscowRussia

Personalised recommendations