Advertisement

Biochemistry (Moscow)

, Volume 84, Issue 9, pp 1008–1020 | Cite as

Post-translational Modifications of Nucleotide Excision Repair Proteins and Their Role in the DNA Repair

  • N. I. RechkunovaEmail author
  • E. A. Maltseva
  • O. I. Lavrik
Review
  • 9 Downloads

Abstract

Nucleotide excision repair (NER) is one of the major DNA repair pathways aimed at maintaining genome stability. Correction of DNA damage by the NER system is a multistage process that proceeds with the formation of multiple DNA-protein and protein-protein intermediate complexes and requires precise coordination and regulation. NER proteins undergo post-translational modifications, such as ubiquitination, sumoylation, phosphorylation, acetylation, and poly(ADP-ribosyl)ation. These modifications affect the interaction of NER factors with DNA and other proteins and thus regulate either their recruitment into the complexes or dissociation from these complexes at certain stages of DNA repair, as well as modulate the functional activity of NER proteins and control the process of DNA repair in general. Here, we review the data on the post-translational modifications of NER factors and their effects on DNA repair. Protein poly(ADP-ribosyl)ation catalyzed by poly(ADP-ribose) polymerase 1 and its impact on NER are discussed in detail, since such analysis has not been done before.

Keywords

nucleotide excision repair factors post-translational modification of proteins activity regulation 

Abbreviations

BPDE

benz[a]pyrene diol epoxide

CPD

cyclobutane pyrimidine dimer

GG-NER

global genome nucleotide excision repair

NER

nucleotide excision repair

PAR

poly(ADP-ribose)

PARP

poly(ADP-ribose) polymerase

RNAP

RNA polymerase

RPA

replication protein A

SUMO

small ubiquitin-like modifier

TC-NER

transcription-coupled NER

TFIIH

transcription factor IIH

XP

xeroderma pigmentosum

XPC and XPA

xeroderma pigmentosum factors C and A, respectively

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements. The authors are grateful to Yu. S. Krasikova for help in the manuscript preparation.

Funding. The work was supported by the Russian Foundation for Basic Research (projects nos. 18-04-00596 and 19-04-00481) and the Program of Basic Scientific Research of the State Academies of Sciences for 2013–2020 (nos. AAAA-A17-117020210022-4 for O.I.L.).

Ethical norm compliance. This review does not contain any studies involving animals or human participants performed by any of the authors.

References

  1. 1.
    Friedberg, E. C. (2003) DNA damage and repair, Nature, 421, 436–440, doi:  https://doi.org/10.1038/nature01408.CrossRefPubMedGoogle Scholar
  2. 2.
    Gillet, L. C., and Scharer, O. D. (2006) Molecular mechanisms of mammalian global genome nucleotide excision repair, Chem. Rev., 106, 253–276, doi:  https://doi.org/10.1021/cr040483f.CrossRefPubMedGoogle Scholar
  3. 3.
    Tornaletti, S., and Hanawalt, P. C. (1999) Effect of DNA lesions on transcription elongation, Biochimie, 81, 139–146.CrossRefPubMedGoogle Scholar
  4. 4.
    Fousteri, M., and Mullenders, L. H. (2008) Transcription-coupled nucleotide excision repair in mammalian cells: molecular mechanisms and biological effects, Cell Res., 18, 73–84, doi:  https://doi.org/10.1038/cr.2008.6.CrossRefPubMedGoogle Scholar
  5. 5.
    Sugasawa, K., Shimizu, Y., Iwai, S., and Hanaoka, F. (2002) A molecular mechanism for DNA damage recognition by the xeroderma pigmentosum group C protein complex, DNA Repair (Amst.), 1, 95–107.CrossRefGoogle Scholar
  6. 6.
    Maillard, O., Camenisch, U., Clement, F. C., Blagoev, K. B., and Naegeli, H. (2007) DNA repair triggered by sensors of helical dynamics, Trends Biochem. Sci., 32, 494–499, doi:  https://doi.org/10.1016/j.tibs.2007.08.008.CrossRefPubMedGoogle Scholar
  7. 7.
    Min, J. H., and Pavletich, N. P. (2007) Recognition of DNA damage by the Rad4 nucleotide excision repair protein, Nature, 449, 570–575, doi:  https://doi.org/10.1038/nature06155.CrossRefPubMedGoogle Scholar
  8. 8.
    Maltseva, E. A., Rechkunova, N. I., Petruseva, I. O., Vermeulen, W., Scharer, O. D., and Lavrik, O. I. (2008) Crosslinking of nucleotide excision repair proteins with DNA containing photoreactive damages, Bioorg. Chem., 36, 77–84, doi:  https://doi.org/10.1016/j.bioorg.2007.11.004.CrossRefPubMedGoogle Scholar
  9. 9.
    Rechkunova, N. I., and Lavrik, O. I. (2010) Nucleotide excision repair in higher eukaryotes: mechanism of primary damage recognition in global genome repair, Subcell. Biochem., 50, 251–277, doi:  https://doi.org/10.1007/978-90-481-3471-7_13.CrossRefPubMedGoogle Scholar
  10. 10.
    Krasikova, Y. S., Rechkunova, N. I., Maltseva, E. A., Pestryakov, P. E., Petruseva, I. O., Sugasawa, K., Chen, X., Min, J. H., and Lavrik, O. I. (2013) Comparative analysis of interaction of human and yeast DNA damage recognition complexes with damaged DNA in nucleotide excision repair, J. Biol. Chem., 288, 10936–10947, doi:  https://doi.org/10.1074/jbc.M112.444026.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Fitch, M. E., Nakajima, S., Yasui, A., and Ford, J. M. (2003) In vivo recruitment of XPC to UV-induced cyclobutane pyrimidine dimers by the DDB2 gene product, J. Biol. Chem., 278, 46906–46910, doi:  https://doi.org/10.1074/jbc.M307254200  https://doi.org/10.1074/jbc.M307254200.CrossRefPubMedGoogle Scholar
  12. 12.
    Moser, J., Volker, M., Kool, H., Alekseev, S., Vrieling, H., Yasui, A., van Zeeland, A. A., and Mullenders, L. H. (2005) The UV-damaged DNA binding protein mediates efficient targeting of the nucleotide excision repair complex to UV-induced photo lesions, DNA Repair (Amst.), 4, 571–582, doi:  https://doi.org/10.1016/j.dnarep.2005.01.001.CrossRefGoogle Scholar
  13. 13.
    Houten, B. V., Kuper, J., and Kisker, C. (2016) Role of XPD in cellular functions: to TFIIH and beyond, DNA Repair (Amst.), 44, 136–142, doi:  https://doi.org/10.1016/j.dnarep.2016.05.019.CrossRefGoogle Scholar
  14. 14.
    Evans, E., Moggs, J. G., Hwang, J. R., Egly, J. M., and Wood, R. D. (1997) Mechanism of open complex and dual incision formation by human nucleotide excision repair factors, EMBO J., 16, 6559–6573, doi:  https://doi.org/10.1093/emboj/16.21.6559.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Staresincic, L., Fagbemi, A. F., Enzlin, J. H., Gourdin, A. M., Wijgers, N., Dunand-Sauthier, I., Giglia-Mari, G., Clarkson, S. G., Vermeulen, W., and Scharer, O. D. (2009) Coordination of dual incision and repair synthesis in human nucleotide excision repair, EMBO J., 28, 1111–1120, doi:  https://doi.org/10.1038/emboj.2009.49.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Krasikova, Y. S., Rechkunova, N. I., Maltseva, E. A., Petruseva, I. O., and Lavrik, O. I. (2010) Localization of xeroderma pigmentosum group A protein and replication protein A on damaged DNA in nucleotide excision repair, Nucleic Acids Res., 38, 8083–8094, doi:  https://doi.org/10.1093/nar/gkq649.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Kemp, M. G., Gaddameedhi, S., Choi, J. H., Hu, J., and Sancar, A. (2014) DNA repair synthesis and ligation affect the processing of excised oligonucleotides generated by human nucleotide excision repair, J. Biol. Chem., 289, 26574–26583, doi:  https://doi.org/10.1074/jbc.M114.597088.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Grabbe, C., Husnjak, K., and Dikic, I. (2011) The spatial and temporal organization of ubiquitin networks, Nat. Rev. Mol. Cell. Biol., 12, 295–307, doi:  https://doi.org/10.1038/nrm3099.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Husnjak, K., and Dikic, I. (2012) Ubiquitin-binding proteins: decoders of ubiquitin-mediated cellular functions, Annu. Rev. Biochem., 81, 291–322, doi:  https://doi.org/10.1146/annurevbiochem-051810-094654.CrossRefPubMedGoogle Scholar
  20. 20.
    Komander, D., and Rape, M. (2012) The ubiquitin code, Annu. Rev. Biochem., 81, 203–229, doi:  https://doi.org/10.1146/annurev-biochem-060310-170328.CrossRefPubMedGoogle Scholar
  21. 21.
    Van Cuijk, L., Vermeulen, W., and Marteijn, J. A. (2014) Ubiquitin at work: the ubiquitous regulation of the damage recognition step of NER, Exp. Cell. Res., 329, 101–109, doi:  https://doi.org/10.1016/j.yexcr.2014.07.018.CrossRefPubMedGoogle Scholar
  22. 22.
    Ruthemann, P., Balbo Pogliano, C., and Naegeli, H. (2016) Global-genome nucleotide excision repair controlled by ubiquitin/sumo modifiers, Front. Genet., 7, 68, doi:  https://doi.org/10.3389/fgene.2016.00068.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Chitale, S., and Richly, H. (2017) Timing of DNA lesion recognition: ubiquitin signaling in the NER pathway, Cell Cycle, 16, 163–171, doi:  https://doi.org/10.1080/15384101.2016.1261227.CrossRefPubMedGoogle Scholar
  24. 24.
    Sugasawa, K., Okuda, Y., Saijo, M., Nishi, R., Matsuda, N., Chu, G., Mori, T., Iwai, S., Tanaka, K., Tanaka, K., and Hanaoka, F. (2005) UV-induced ubiquitination of XPC protein mediated by UV-DDB-ubiquitin ligase complex, Cell, 121, 387–400, doi:  https://doi.org/10.1016/j.cell.2005.02.035.CrossRefPubMedGoogle Scholar
  25. 25.
    Fischer, E. S., Scrima, A., Bohm, K., Matsumoto, S., Lingaraju, G. M., Faty, M., Yasuda, T., Cavadini, S., Wakasugi, M., Hanaoka, F., Iwai, S., Gut, H., Sugasawa, K., and Thoma, N. H. (2011) The molecular basis of CRL4DDB2/CSA ubiquitin ligase architecture, targeting, and activation, Cell, 147, 1024–1039, doi:  https://doi.org/10.1016/j.cell.2011.10.035.CrossRefPubMedGoogle Scholar
  26. 26.
    Kapetanaki, M. G., Guerrero-Santoro, J., Bisi, D. C., Hsieh, C. L., Rapic-Otrin, V., and Levine, A. S. (2006) The DDB1-CUL4ADDB2 ubiquitin ligase is deficient in xeroderma pigmentosum group E and targets histone H2A at UV-damaged DNA sites, Proc. Natl. Acad. Sci. USA, 103, 2588–2593, doi:  https://doi.org/10.1073/pnas.0511160103.CrossRefPubMedGoogle Scholar
  27. 27.
    Wang, H., Zhai, L., Xu, J., Joo, H. Y., Jackson, S., Erdjument-Bromage, H., Tempst, P., Xiong, Y., and Zhang, Y. (2006) Histone H3 and H4 ubiquitination by the CUL4-DDB-ROC1 ubiquitin ligase facilitates cellular response to DNA damage, Mol. Cell, 22, 383–394, doi:  https://doi.org/10.1016/j.molcel.2006.03.035.CrossRefPubMedGoogle Scholar
  28. 28.
    Groisman, R., Polanowska, J., Kuraoka, I., Sawada, J., Saijo, M., Drapkin, R., Kisselev, A. F., Tanaka, K., and Nakatani, Y. (2003) The ubiquitin ligase activity in the DDB2 and CSA complexes is differentially regulated by the COP9 signalosome in response to DNA damage, Cell, 113, 357–367.CrossRefPubMedGoogle Scholar
  29. 29.
    Matsumoto, S., Fischer, E. S., Yasuda, T., Dohmae, N., Iwai, S., Mori, T., Nishi, R., Yoshino, K., Sakai, W., Hanaoka, F., Thoma, N. H., and Sugasawa, K. (2015) Functional regulation of the DNA damage-recognition factor DDB2 by ubiquitination and interaction with xeroderma pigmentosum group C protein, Nucleic Acids Res., 43, 1700–1713, doi:  https://doi.org/10.1093/nar/gkv038.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Puumalainen, M. R., Lessel, D., Ruthemann, P., Kaczmarek, N., Bachmann, K., Ramadan, K., and Naegeli, H. (2014) Chromatin retention of DNA damage sensors DDB2 and XPC through loss of p97 segregase causes genotoxicity, Nat. Commun., 5, 3695, doi:  https://doi.org/10.1038/ncomms4695.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    He, J., Zhu, Q., Wani, G., Sharma, N., Han, C., Qian, J., Pentz, K., Wang, Q. E., and Wani, A. A. (2014) Ubiquitin-specific protease 7 regulates nucleotide excision repair through deubiquitinating XPC protein and preventing XPC protein from undergoing ultraviolet light-induced and VCP/p97 protein-regulated proteolysis, J. Biol. Chem., 289, 27278–27289, doi:  https://doi.org/10.1074/jbc.M114.589812.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Guerrero-Santoro, J., Kapetanaki, M. G., Hsieh, C. L., Gorbachinsky, I., Levine, A. S., and Rapic-Otrin, V. (2008) The cullin 4B-based UV-damaged DNA-binding protein ligase binds to UV-damaged chromatin and ubiquitinates histone H2A, Cancer Res., 68, 5014–5022, doi:  https://doi.org/10.1158/0008-5472.CAN-07-6162.CrossRefPubMedGoogle Scholar
  33. 33.
    Wang, Q. E., Zhu, Q., Wani, G., El-Mahdy, M. A., Li, J., and Wani, A. A. (2005) DNA repair factor XPC is modified by SUMO-1 and ubiquitin following UV irradiation, Nucleic Acids Res., 33, 4023–4034, doi:  https://doi.org/10.1093/nar/gki684.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Van Cuijk, L., van Belle, G. J., Turkyilmaz, Y., Poulsen, S. L., Janssens, R. C., Theil, A. F., Sabatella, M., Lans, H., Mailand, N., Houtsmuller, A. B., Vermeulen, W., and Marteijn, J. A. (2015) SUMO and ubiquitin-dependent XPC exchange drives nucleotide excision repair, Nat. Commun., 6, 7499, doi:  https://doi.org/10.1038/ncomms8499.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Han, C., Zhao, R., Kroger, J., He, J., Wani, G., Wang, Q. E., and Wani, A. A. (2017) UV irradiation-induced SUMOylation of DDB2 regulates nucleotide excision repair, Carcinogenesis, 38, 976–985, doi:  https://doi.org/10.1093/carcin/bgx076.CrossRefPubMedGoogle Scholar
  36. 36.
    Poulsen, S. L., Hansen, R. K., Wagner, S. A., van Cuijk, L., van Belle, G. J., Streicher, W., Wikstrom, M., Choudhary, C., Houtsmuller, A. B., Marteijn, J. A., Bekker-Jensen, S., and Mailand, N. (2013) RNF111/Arkadia is a SUMO-targeted ubiquitin ligase that facilitates the DNA damage response, J. Cell. Biol., 201, 797–807, doi:  https://doi.org/10.1083/jcb.201212075.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Akita, M., Tak, Y. S., Shimura, T., Matsumoto, S., Okuda-Shimizu, Y., Shimizu, Y., Nishi, R., Saitoh, H., Iwai, S., Mori, T., Ikura, T., Sakai, W., Hanaoka, F., and Sugasawa, K. (2015) SUMOylation of xeroderma pigmentosum group C protein regulates DNA damage recognition during nucleotide excision repair, Sci. Rep., 5, 10984, doi:  https://doi.org/10.1038/srep10984.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Klein, U. R., and Nigg, E. A. (2009) SUMO-dependent regulation of centrin-2, J. Cell. Sci., 122, 3312–3321, doi:  https://doi.org/10.1242/jcs.050245.CrossRefPubMedGoogle Scholar
  39. 39.
    Wilson, M. D., Harreman, M., and Svejstrup, J. Q. (2013) Ubiquitination and degradation of elongating RNA polymerase II: the last resort, Biochim. Biophys. Acta, 1829, 151–157, doi:  https://doi.org/10.1016/j.bbagrm.2012.08.002.CrossRefPubMedGoogle Scholar
  40. 40.
    Kang, T. H., Lindsey-Boltz, L. A., Reardon, J. T., and Sancar, A. (2010) Circadian control of XPA and excision repair of cisplatin-DNA damage by cryptochrome and HERC2 ubiquitin ligase, Proc. Natl. Acad. Sci. USA, 107, 4890–4895, doi:  https://doi.org/10.1073/pnas.0915085107.CrossRefPubMedGoogle Scholar
  41. 41.
    Yates, M., and Marechal, A. (2018) Ubiquitination at the fork: making and breaking chains to complete DNA replication, Int. J. Mol. Sci., 19, E2909, doi:  https://doi.org/10.3390/ijms19102909.CrossRefPubMedGoogle Scholar
  42. 42.
    Dou, H., Huang, C., Singh, M., Carpenter, P. B., and Yeh, E. T. (2010) Regulation of DNA repair through deSUMOylation and SUMOylation of replication protein A complex, Mol. Cell, 39, 333–345, doi:  https://doi.org/10.1016/j.molcel.2010.07.021.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Perez-Oliva, A. B., Lachaud, C., Szyniarowski, P., Munoz, I., Macartney, T., Hickson, I., Rouse, J., and Alessi, D. R. (2015) USP45 deubiquitinase controls ERCC1-XPF endonuclease-mediated DNA damage responses, EMBO J., 34, 326–343, doi:  https://doi.org/10.15252/embj.201489184.CrossRefPubMedGoogle Scholar
  44. 44.
    Ame, J. C., Spenlehauer, C., and de Murcia, G. (2004) The PARP superfamily, Bioessays, 26, 882–893, doi:  https://doi.org/10.1002/bies.20085.CrossRefPubMedGoogle Scholar
  45. 45.
    Schreiber, V., Dantzer, F., Ame, J. C., and de Murcia, G. (2006) Poly(ADP-ribose): novel functions for an old molecule, Nat. Rev. Mol. Cell. Biol., 7, 517–528, doi:  https://doi.org/10.1038/nrm1963.CrossRefPubMedGoogle Scholar
  46. 46.
    Shieh, W. M., Ame, J. C., Wilson, M. V., Wang, Z. Q., Koh, D. W., Jacobson, M. K., and Jacobson, E. L. (1998) Poly(ADP-ribose) polymerase null mouse cells synthesize ADP-ribose polymers. J. Biol. Chem., 273, 30069–30072.Google Scholar
  47. 47.
    Virag, L., and Szabo, C. (2002) The therapeutic potential of poly(ADP-ribose) polymerase inhibitors, Pharmacol. Rev., 54, 375–429.CrossRefPubMedGoogle Scholar
  48. 48.
    Burkle, A., and Virag, L. (2013) Poly(ADP-ribose): PARadigms and PARadoxes, Mol. Aspects Med., 34, 1046–1065, doi:  https://doi.org/10.1016/j.mam.2012.12.010.CrossRefPubMedGoogle Scholar
  49. 49.
    Kraus, W. L., and Hottiger, M. O. (2013) PARP-1 and gene regulation: progress and puzzles, Mol. Aspects Med., 34, 1109–1123, doi:  https://doi.org/10.1016/j.mam.2013.01.005.CrossRefPubMedGoogle Scholar
  50. 50.
    Bock, F. J., Todorova, T. T., and Chang, P. (2015) RNA regulation by poly(ADP-ribose) polymerases, Mol. Cell, 58, 959–969, doi:  https://doi.org/10.1016/j.molcel.2015.01.037.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Liu, C., Vyas, A., Kassab, M. A., Singh, A. K., and Yu, X. (2017) The role of poly ADP-ribosylation in the first wave of DNA damage response, Nucleic Acids Res., 45, 8129–8141, doi:  https://doi.org/10.1093/nar/gkx565.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Khodyreva, S. N., and Lavrik, O. I. (2016) Poly(ADP-ribose) polymerase 1 as a key regulator of DNA repair, Mol. Biol. (Moscow), 50, 580–595, doi:  https://doi.org/10.7868/S0026898416040030.CrossRefGoogle Scholar
  53. 53.
    Sukhanova, M. V., Khodyreva, S. N., Lebedeva, N. A., Prasad, R., Wilson, S. H., and Lavrik, O. I. (2005) Human base excision repair enzymes apurinic/apyrimidinic endonuclease 1 (APE1), DNA polymerase beta and poly(ADP-ribose) polymerase 1: interplay between strand-displacement DNA synthesis and proofreading exonuclease activity, Nucleic Acids Res., 33, 1222–1229, doi:  https://doi.org/10.1093/nar/gki266.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Sukhanova, M. V., Khodyreva, S. N., and Lavrik, O. I. (2004) Poly(ADP-ribose) polymerase-1 inhibits strand-displacement synthesis of DNA catalyzed by DNA polymerase beta, Biochemistry (Moscow), 69, 558–568.CrossRefGoogle Scholar
  55. 55.
    Berger, N. A., Sikorski, G. W., Petzold, S. J., and Kurohara, K. K. (1980) Defective poly(adenosine diphosphoribose) synthesis in xeroderma pigmentosum, Biochemistry, 19, 289–293.CrossRefPubMedGoogle Scholar
  56. 56.
    McCurry, L. S., and Jacobson, M. K. (1981) Poly(ADP-ribose) synthesis following DNA damage in cells heterozygous or homozygous for the xeroderma pigmentosum genotype, J. Biol. Chem., 256, 551–553.PubMedGoogle Scholar
  57. 57.
    Jacobson, E. L., Antol, K. M., Juarez-Salinas, H., and Jacobson, M. K. (1983) Poly(ADP-ribose) metabolism in ultraviolet irradiated human fibroblasts, J. Biol. Chem., 258, 103–107.PubMedGoogle Scholar
  58. 58.
    Yoon, Y. S., Kim, J. W., Kang, K. W., Kim, Y. S., Choi, K. H., and Joe, C. O. (1996) Poly(ADP-ribosyl)ation of histone H1 correlates with internucleosomal DNA fragmentation during apoptosis, J. Biol. Chem., 271, 9129–9134.CrossRefPubMedGoogle Scholar
  59. 59.
    Chang, H., Sander, C. S., Muller, C. S., Elsner, P., and Thiele, J. J. (2002) Detection of poly(ADP-ribose) by immunocytochemistry: a sensitive new method for the early identification of UVB- and H2O2-induced apoptosis in keratinocytes, Biol. Chem., 383, 703–708, doi:  https://doi.org/10.1515/BC.2002.072.CrossRefPubMedGoogle Scholar
  60. 60.
    Pleschke, J. M., Kleczkowska, H. E., Strohm, M., and Althaus, F. R. (2000) Poly(ADP-ribose) binds to specific domains in DNA damage checkpoint proteins, J. Biol. Chem., 275, 40974–40980, doi:  https://doi.org/10.1074/jbc.M006520200.CrossRefPubMedGoogle Scholar
  61. 61.
    Fahrer, J., Kranaster, R., Altmeyer, M., Marx, A., and Burkle, A. (2007) Quantitative analysis of the binding affinity of poly(ADP-ribose) to specific binding proteins as a function of chain length, Nucleic Acids Res., 35, e143, doi:  https://doi.org/10.1093/nar/gkm944.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Gagne, J. P., Isabell, M., Lo, K. S., Bourassa, S., Hendzel, M. J., Dawson, V. L., Dawson, T. M., and Poirier, G. G. (2008) Proteome-wide identification of poly(ADP-ribose) binding proteins and poly(ADP-ribose)-associated protein complexes, Nucleic Acids Res., 36, 6959–6976, doi:  https://doi.org/10.1093/nar/gkn771.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Jungmichel, S., Rosenthal, F., Altmeyer, M., Lukas, J., Hottiger, M. O., and Nielsen, M. L. (2013) Proteome-wide identification of poly(ADP-ribosyl)ation targets in different genotoxic stress responses, Mol. Cell., 52, 272–285, doi:  https://doi.org/10.1016/j.molcel.2013.08.026.CrossRefPubMedGoogle Scholar
  64. 64.
    Flohr, C., Burkle, A., Radicella, J. P., and Epe, B. (2003) Poly(ADP-ribosyl)ation accelerates DNA repair in a pathway dependent on Cockayne syndrome B protein, Nucleic Acids Res., 31, 5332–5337.CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Vodenicharov, M. D., Ghodgaonkar, M. M., Halappanavar, S. S., Shah, R. G., and Shah, G. M. (2005) Mechanism of early biphasic activation of poly(ADP-ribose) polymerase-1 in response to ultraviolet B irradiation, J. Cell. Sci., 118, 589–599, doi:  https://doi.org/10.1242/jcs.01636.CrossRefPubMedGoogle Scholar
  66. 66.
    Purohit, N. K., Robu, M., Shah, R. G., Geacintov, N. E., and Shah, G. M. (2016) Characterization of the interactions of PARP-1 with UV-damaged DNA in vivo and in vitro, Sci. Rep., 6, 19020, doi:  https://doi.org/10.1038/srep19020.CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Lin, T., and Yang, M. S. (2008) Benzo[a]pyrene-induced necrosis in the HepG(2) cells via PARP-1 activation and NAD+ depletion, Toxicology, 245, 147–153, doi:  https://doi.org/10.1016/j.tox.2007.12.020.CrossRefPubMedGoogle Scholar
  68. 68.
    Tao, G. H., Yang, L. Q., Gong, C. M., Huang, H. Y., Liu, J. D., Liu, J. J., Yuan, J. H., Chen, W., and Zhuang, Z. X. (2009) Effect of PARP-1 deficiency on DNA damage and repair in human bronchial epithelial cells exposed to benzo(a)pyrene, Mol. Biol. Rep., 36, 2413–2422, doi:  https://doi.org/10.1007/s11033-009-9472-z.CrossRefPubMedGoogle Scholar
  69. 69.
    Fischer, J. M. F., Zubel, T., Jander, K., Fix, J., Trussina, I. R. E. A., Gebhard, D., Bergemann, J., Burkle, A., and Mangerich, A. (2018) PARP1 protects from benzo[a]pyrene diol epoxide-induced replication stress and mutagenicity, Arch. Toxicol., 92, 1323–1340, doi:  https://doi.org/10.1007/s00204-017-2115-6.CrossRefPubMedGoogle Scholar
  70. 70.
    Pines, A., Vrouwe, M. G., Marteijn, J. A., Typas, D., Luijsterburg, M. S., Cansoy, M., Hensbergen, P., Deelder, A., de Groot, A., Matsumoto, S., Sugasawa, K., Thoma, N., Vermeulen, W., Vrieling, H., and Mullenders, L. (2012) PARP1 promotes nucleotide excision repair through DDB2 stabilization and recruitment of ALC1, J. Cell. Biol., 199, 235–249, doi:  https://doi.org/10.1083/jcb.201112132.CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Luijsterburg, M. S., Lindh, M., Acs, K., Vrouwe, M. G., Pines, A., van Attikum, H., Mullenders, L. H., and Dantuma, N. P. (2012) DDB2 promotes chromatin decondensation at UV-induced DNA damage, J. Cell Biol., 197, 267–281, doi:  https://doi.org/10.1083/jcb.201106074.CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Robu, M., Shah, R. G., Petitclerc, N., Brind'Amour, J., Kandan-Kulangara, F., and Shah, G. M. (2013) Role of poly(ADP-ribose) polymerase-1 in the removal of UV-induced DNA lesions by nucleotide excision repair, Proc. Natl. Acad. Sci. USA, 110, 1658–1663, doi:  https://doi.org/10.1073/pnas.1209507110.CrossRefPubMedGoogle Scholar
  73. 73.
    Robu, M., Shah, R. G., Purohit, N. K., Zhou, P., Naegeli, H., and Shah, G. M. (2017) Poly(ADP-ribose) polymerase 1 escorts XPC to UV-induced DNA lesions during nucleotide excision repair, Proc. Natl. Acad. Sci. USA, 114, 6847–6856, doi:  https://doi.org/10.1073/pnas.1706981114.CrossRefGoogle Scholar
  74. 74.
    Maltseva, E. A., Rechkunova, N. I., Sukhanova, M. V., and Lavrik, O. I. (2015) Poly(ADP-ribose) polymerase 1 modulates interaction of the nucleotide excision repair factor XPC-RAD23B with DNA via poly(ADP-ribosyl)ation, J. Biol. Chem., 290, 21811–21820, doi:  https://doi.org/10.1074/jbc.M115.646638.CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    King, B. S., Cooper, K. L., Liu, K. J., and Hudson, L. G. (2012) Poly(ADP-ribose) contributes to an association between poly(ADP-ribose) polymerase-1 and xeroderma pigmentosum complementation group A in nucleotide excision repair, J. Biol. Chem., 287, 39824–39833, doi:  https://doi.org/10.1074/jbc.M112.393504.CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Fischer, J. M., Popp, O., Gebhard, D., Veith, S., Fischbach, A., Beneke, S., Leitenstorfer, A., Bergemann, J., Scheffner, M., Ferrando-May, E., Mangerich, A., and Burkle, A. (2014) Poly(ADP-ribose)-mediated interplay of XPA and PARP1 leads to reciprocal regulation of protein function, FEBS J., 281, 3625–3641, doi:  https://doi.org/10.1111/febs.12885.CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Eki, T., and Hurwitz, J. (1991) Influence of poly(ADP-ribose) polymerase on the enzymatic synthesis of SV40 DNA, J. Biol. Chem., 266, 3087–3100.PubMedGoogle Scholar
  78. 78.
    Gagne, J. P., Pic, E., Isabelle, M., Krietsch, J., Ethier, C., Paquet, E., Kelly, I., Boutin, M., Moon, K. M., Foster, L. J., and Poirier, G. G. (2012) Quantitative proteomics profiling of the poly(ADP-ribose)-related response to genotoxic stress, Nucleic Acids Res., 40, 7788–7805, doi:  https://doi.org/10.1093/nar/gks486.CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Illuzzi, G., Fouquerel, E., Ame, J. C., Noll, A., Rehmet, K., Nasheuer, H. P., Dantzer, F., and Schreiber, V. (2014) PARG is dispensable for recovery from transient replicative stress but required to prevent detrimental accumulation of poly(ADP-ribose) upon prolonged replicative stress, Nucleic Acids Res., 42, 7776–7792, doi:  https://doi.org/10.1093/nar/gku505.CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Maltseva, E. A., Krasikova, Y. S., Sukhanova, M. V., Rechkunova, N. I., and Lavrik, O. I. (2018) Replication protein A as a modulator of the poly(ADP-ribose)polymerase 1 activity, DNA Repair (Amst.), 72, 28–38, doi:  https://doi.org/10.1016/j.dnarep.2018.09.010.CrossRefGoogle Scholar
  81. 81.
    Thorslund, T., von Kobbe, C., Harrigan, J. A., Indig, F. E., Christiansen, M., Stevnsner, T., and Bohr, V. A. (2005) Cooperation of the Cockayne syndrome group B protein and poly(ADP-ribose) polymerase 1 in the response to oxidative stress, Mol. Cell. Biol., 25, 7625–7636, doi:  https://doi.org/10.1128/MCB.25.17.7625-7636.2005.CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Evdokimov, A. N., Petruseva, I. O., Pestryakov, P. E., and Lavrik, O. I. (2011) Photoactivated DNA analogs of substrates of the nucleotide excision repair system and their interaction with proteins of NER-competent extract of HeLa cells. Synthesis and application of long model DNA, Biochemistry (Moscow), 76, 157–166.CrossRefGoogle Scholar
  83. 83.
    Yu, Y., and Waters, R. (2005) Histone acetylation, chromatin remodeling and nucleotide excision repair: hint from the study on MFA2 in Saccharomyces cerevisiae, Cell Cycle, 4, 1043–1045, doi:  https://doi.org/10.4161/cc.4.8.1928.CrossRefPubMedGoogle Scholar
  84. 84.
    Waters, R., van Eijk, P., and Reed, S. (2015) Histone modification and chromatin remodeling during NER, DNA Repair (Amst.), 36, 105–113, doi:  https://doi.org/10.1016/j.dnarep.2015.09.013.CrossRefGoogle Scholar
  85. 85.
    Yu, S., Evans, K., van Eijk, P., Bennett, M., Webster, R. M., Leadbitter, M., Teng, Y., Waters, R., Jackson, S. P., and Reed, S. H. (2016) Global genome nucleotide excision repair is organized into domains that promote efficient DNA repair in chromatin, Genome Res., 26, 1376–1387, doi:  https://doi.org/10.1101/gr.209106.116.CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Datta, A., Bagchi, S., Nag, A., Shiyanov, P., Adami, G. R., Yoon, T., and Raychaudhuri, P. (2001) The p48 subunit of the damaged-DNA binding protein DDB associates with the CBP/p300 family of histone acetyltransferase, Mutat. Res., 486, 89–97.CrossRefPubMedGoogle Scholar
  87. 87.
    Rapic-Otrin, V., McLenigan, M. P., Bisi, D. C., Gonzalez, M., and Levine, A. S. (2002) Sequential binding of UV DNA damage binding factor and degradation of the p48 subunit as early events after UV irradiation, Nucleic Acids Res., 30, 2588–2598.CrossRefPubMedGoogle Scholar
  88. 88.
    Martinez, E., Palhan, V. B., Tjernberg, A., Lymar, E. S., Gamper, A. M., Kundu, T. K., Chait, B. T., and Roeder, R. G. (2001) Human STAGA complex is a chromatin-acetylating transcription coactivator that interacts with pre-mRNA splicing and DNA damage-binding factors in vivo, Mol. Cell. Biol., 21, 6782–6795, doi:  https://doi.org/10.1128/MCB.21.20.6782-6795.2001.CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Matsunuma, R., Niida, H., Ohhata, T., Kitagawa, K., Sakai, S., Uchida, C., Shiotani, B., Matsumoto, M., Nakayama, K. I., Ogura, H., Shiiya, N., and Kitagawa, M. (2015) UV damage-induced phosphorylation of HBO1 triggers CRL4DDB2-mediated degradation to regulate cell proliferation, Mol. Cell. Biol., 36, 394–406, doi:  https://doi.org/10.1128/MCB.00809-15.CrossRefPubMedGoogle Scholar
  90. 90.
    Zhao, R., Han, C., Eisenhauer, E., Kroger, J., Zhao, W., Yu, J., Selvendiran, K., Liu, X., Wani, A. A., and Wang, Q. E. (2014) DNA damage-binding complex recruits HDAC1 to repress Bcl-2 transcription in human ovarian cancer cells, Mol. Cancer Res., 12, 370–380, doi:  https://doi.org/10.1158/1541-7786.MCR-13-0281.CrossRefPubMedGoogle Scholar
  91. 91.
    Zhu, Q., Battu, A., Ray, A., Wani, G., Qian, J., He, J., Wang, Q. E., and Wani, A. A. (2015) Damaged DNA-binding protein down-regulates epigenetic mark H3K56Ac through histone deacetylase 1 and 2, Mutat. Res., 776, 16–23, doi:  https://doi.org/10.1016/j.mrfmmm.2015.01.005.CrossRefPubMedPubMedCentralGoogle Scholar
  92. 92.
    Kakumu, E., Nakanishi, S., Shiratori, H. M., Kato, A., Kobayashi, W., Machida, S., Yasuda, T., Adachi, N., Saito, N., Ikura, T., Kurumizaka, H., Kimura, H., Yokoi, M., Sakai, W., and Sugasawa, K. (2017) Xeroderma pigmento-sum group C protein interacts with histones: regulation by acetylated states of histone H3, Genes Cells, 22, 310–327, doi:  https://doi.org/10.1111/gtc.12479.CrossRefPubMedGoogle Scholar
  93. 93.
    Tillhon, M., Cazzalini, O., Nardo, T., Necchi, D., Sommatis, S., Stivala, L. A., Scovassi, A. I., and Prosperi, E. (2012) p300/CBP acetyl transferases interact with and acetylate the nucleotide excision repair factor XPG, DNA Repair (Amst.), 11, 844–852, doi:  https://doi.org/10.1016/j.dnarep.2012.08.001.CrossRefGoogle Scholar
  94. 94.
    Fan, W., and Luo, J. (2010) SIRT1 regulates UV-induced DNA repair through deacetylating XPA, Mol. Cell, 39, 247–258, doi:  https://doi.org/10.1016/j.molcel.2010.07.006.CrossRefPubMedGoogle Scholar
  95. 95.
    Zhao, M., Geng, R., Guo, X., Yuan, R., Zhou, X., Zhong, Y., Huo, Y., Zhou, M., Shen, Q., Li, Y., Zhu, W., and Wang, J. (2017) PCAF/GCN5-mediated acetylation of RPA1 promotes nucleotide excision repair, Cell Rep., 20, 1997–2009, doi:  https://doi.org/10.1016/j.celrep.2017.08.015.CrossRefPubMedGoogle Scholar
  96. 96.
    He, H., Wang, J., and Liu, T. (2017) UV-Induced RPA1 acetylation promotes nucleotide excision repair, Cell Rep., 20, 2010–2025, doi:  https://doi.org/10.1016/j.celrep.2017.08.016.CrossRefPubMedGoogle Scholar
  97. 97.
    Matsuoka, S., Ballif, B. A., Smogorzewska, A., McDonald, E. R., 3rd, Hurov, K. E., Luo, J., Bakalarski, C. E., Zhao, Z., Solimini, N., Lerenthal, Y., Shiloh, Y., Gygi, S. P., and Elledge, S. J. (2007) ATM and ATR substrate analysis reveals extensive protein networks responsive to DNA damage, Science, 316, 1160–1166, doi:  https://doi.org/10.1126/science.1140321.CrossRefPubMedGoogle Scholar
  98. 98.
    Zannini, L., Delia, D., and Buscemi, G. (2014) CHK2 kinase in the DNA damage response and beyond, J. Mol. Cell. Biol., 6, 442–457, doi:  https://doi.org/10.1093/jmcb/mju045.CrossRefPubMedPubMedCentralGoogle Scholar
  99. 99.
    Attwood, P. V., Besant, P. G., and Piggott, M. J. (2011) Focus on phosphoaspartate and phosphoglutamate, Amino Acids, 40, 1035–1051, doi:  https://doi.org/10.1007/s00726-010-0738-5.CrossRefPubMedGoogle Scholar
  100. 100.
    Hornbeck, P. V., Kornhauser, J. M., Tkachev, S., Zhang, B., Skrzypek, E., Murray, B., Latham, V., and Sullivan, M. (2012) PhosphoSitePlus: a comprehensive resource for investigating the structure and function of experimentally determined post-translational modifications in man and mouse, Nucleic Acids Res., 40, D261–D270, doi:  https://doi.org/10.1093/nar/gkr1122.CrossRefPubMedGoogle Scholar
  101. 101.
    Shah, P., Zhao, B., Qiang, L., and He, Y. Y. (2018) Phosphorylation of xeroderma pigmentosum group C regulates ultraviolet-induced DNA damage repair, Nucleic Acids Res., 46, 5050–5060, doi:  https://doi.org/10.1093/nar/gky239  https://doi.org/10.1093/nar/gky239.CrossRefPubMedPubMedCentralGoogle Scholar
  102. 102.
    Wu, X., Shell, S. M., Yang, Z., and Zou, Y. (2006) Phosphorylation of nucleotide excision repair factor xeroderma pigmentosum group A by ataxia telangiectasia mutated and Rad3-related-dependent checkpoint pathway promotes cell survival in response to UV irradiation, Cancer Res., 66, 2997–3005, doi:  https://doi.org/10.1158/0008-5472.CAN-05-3403.CrossRefPubMedPubMedCentralGoogle Scholar
  103. 103.
    Lee, T. H., Park, J. M., Leem, S. H., and Kang, T. H. (2014) Coordinated regulation of XPA stability by ATR and HERC2 during nucleotide excision repair, Oncogene, 33, 19–25, doi:  https://doi.org/10.1038/onc.2012.539.CrossRefPubMedGoogle Scholar
  104. 104.
    Coin, F., Auriol, J., Tapias, A., Clivio, P., Vermeulen, W., and Egly, J. M. (2004) Phosphorylation of XPB helicase regulates TFIIH nucleotide excision repair activity, EMBO J., 23, 4835–4846, doi:  https://doi.org/10.1038/sj.emboj.7600480.CrossRefPubMedPubMedCentralGoogle Scholar
  105. 105.
    Oakley, G. G., Loberg, L. I., Yao, J., Risinger, M. A., Yunker, R. L., Zernik-Kobak, M., Khanna, K. K., Lavin, M. F., Carty, M. P., and Dixon, K. (2001) UV-induced hyperphosphorylation of replication protein A depends on DNA replication and expression of ATM protein, Mol. Biol. Cell, 12, 1199–1213, doi:  https://doi.org/10.1091/mbc.12.5.1199.CrossRefPubMedPubMedCentralGoogle Scholar
  106. 106.
    Liu, V. F., and Weaver, D. T. (1993) The ionizing irradiation-induced replication protein A phosphorylation response differs between ataxia telangiectasia and normal human cells, Mol. Cell. Biol., 13, 7222–7231.CrossRefPubMedPubMedCentralGoogle Scholar
  107. 107.
    Rodrigo, G., Roumagnac, S., Wold, M. S., Salles, B., and Calsou, P. (2000) DNA replication but not nucleotide excision repair is required for UVC-induced replication protein A phosphorylation in mammalian cells, Mol. Cell. Biol., 20, 2696–2705.CrossRefPubMedPubMedCentralGoogle Scholar
  108. 108.
    Niida, H., Matsunuma, R., Horiguchi, R., Uchida, C., Nakazawa, Y., Motegi, A., Nishimoto, K., Sakai, S., Ohhata, T., Kitagawa, K., Moriwaki, S., Nishitani, H., Ui, A., Ogi, T., and Kitagawa, M. (2017) Phosphorylated HBO1 at UV irradiated sites is essential for nucleotide excision repair, Nat. Commun., 8, 16102, doi:  https://doi.org/10.1038/ncomms16102.CrossRefPubMedPubMedCentralGoogle Scholar
  109. 109.
    Krishnakumar, R., and Kraus, W. L. (2010) The PARP side of the nucleus: molecular actions, physiological outcomes, and clinical targets, Mol. Cell, 39, 8–24, doi:  https://doi.org/10.1016/j.molcel.2010.06.017.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • N. I. Rechkunova
    • 1
    • 2
    Email author
  • E. A. Maltseva
    • 1
  • O. I. Lavrik
    • 1
    • 2
  1. 1.Institute of Chemical Biology and Fundamental MedicineSiberian Branch of the Russian Academy of SciencesNovosibirskRussia
  2. 2.Novosibirsk State UniversityNovosibirskRussia

Personalised recommendations