Advertisement

Biochemistry (Moscow)

, Volume 84, Issue 9, pp 992–1007 | Cite as

Mechanisms of Antiphospholipid Syndrome Induction: Role of NKT Cells

  • S. V. ShirshevEmail author
Review
  • 1 Downloads

Abstract

The review discusses the mechanisms of participation of natural killer T cells (NKT cells) in the induction of antiphospholipid antibodies (APA) that play a major pathogenetic role in the formation of antiphospholipid syndrome (APS), summarizes the data on APS pathogenesis, and presents modern concepts on the antibody formation involving follicular helper type II NK cells.

Keywords

antiphospholipid syndrome antiphospholipid antibodies NK cells B lymphocytes humoral immune response 

Abbreviations

ACA

anticardiolipin antibodies

AP-1

activator protein 1

APA

antiphospholipid antibodies

APC

antigen-presenting cell

ApoER2

apolipoprotein E receptor 2

APRIL

proliferation-inducing ligand

APS

antiphospholipid syndrome

BAFF

B-cell activating factor belonging to the TNF family

Bcl-6

B-cell lymphoma 6 protein

BCR

B-cell receptor

β2GPI

β2-glycoprotein I

Blimp-1

B-lymphocyte-induced maturation protein 1

CAPS

catastrophic antiphospholipid syndrome

CD

cluster of differentiation (leukocyte antigen)

DC

dendritic cell

EC

endothelial cell

FDC

follicular dendritic cell

FRC

follicular reticular cell

GC

germinal center

HLA-DR

human leukocyte antigen, DR isotype

ICOS

inducible co-stimulator

ICOSL

ICOS ligand

IFN-γ

interferon γ

Ig

immunoglobulin

IL

interleukin

LA

lupus anticoagulant

LDLR

low density and very low density lipoprotein receptor

mB cell

memory B cell

MHC

major histocompatibility complex

NF-κB

nuclear factor kappa-light-chain-enhancer of activated B cells

NK

natural killer T cell

p38MAPK

p38 mitogen-activated protein kinase

PC

plasma cell

PD-1

programmed cell death protein 1

PT

prothrombin

SAP

SLAM (signaling lymphocytic activation molecule) adaptor protein (adaptor protein of CD150 and PD-1 molecule families)

TCR

T-cell receptor

TD

thymus-dependent immune response

TF

tissue factor

TFH

T follicular helper cell

TFPI

tissue factor pathway inhibitor

Th cell

T helper cell

TI

thymus-independent immune response

TLR

Toll-like receptor

TNF-γ

tumor necrosis factor α

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Funding. The work was performed as a part of the state task no. 01201353248 “Mechanisms of Immune System Regulation”.

Compliance with ethical norms. This article does not contain descriptions of studies with participation of animals or human subjects performed by the author.

References

  1. 1.
    Mehdi, A. A., Uthman, I., and Khamashta, M. (2010) Antiphospholipid syndrome: pathogenesis and a window of treatment opportunities in the future, Eur. J. Clin. Invest., 40, 451–464, doi:  https://doi.org/10.1111/j.1365-2362.2010.02281.x.CrossRefPubMedGoogle Scholar
  2. 2.
    Arachchillage, D. R. J., and Laffan, M. (2017) Pathogenesis and management of antiphospholipid syndrome, Br. J. Haematol., 178, 1–15, doi:  https://doi.org/10.1111/bjh14632.CrossRefGoogle Scholar
  3. 3.
    Ruiz-Irastorza, G., Crowther, M., Branch, W., and Khamashta, M. A. (2010) Antiphospholipid syndrome, Lancet, 376, 1498–1509, doi:  https://doi.org/10.1016/S0140-6736(10)60709-X.CrossRefPubMedGoogle Scholar
  4. 4.
    Miyakis, S., Lockshin, M. D., Atsumi, T., Branch, D. W., Brey, R. L., Cervera, R., Derksen, R. H., de Groot, P. G., Koike, T., Meroni, P. L., Reber, G., Shoenfeld, Y., Tincani, A., Vlachoyiannopoulos, P. G., and Krilis, S. A. (2006) International consensus statement on an update of the classification criteria for definite antiphospholipid syndrome (APS), J. Thromb. Haemost., 4, 295–306, doi:  https://doi.org/10.1111/j.1538-7836.2006.01753.x.CrossRefPubMedGoogle Scholar
  5. 5.
    Willis, R., and Pierangeli, S. S. (2013) Anti-ß2-glycoprotein I antibodies, Ann. N. Y. Acad. Sci., 1285, 44–58, doi:  https://doi.org/10.1111/nyas.12080.CrossRefPubMedGoogle Scholar
  6. 6.
    Bas de Laat, H., Derksen, R. H., and de Groot, P. G. (2004) ß2-glycoprotein I, the playmaker of the antiphospholipid syndrome, Clin. Immunol., 112, 161–168, doi:  https://doi.org/10.1016/j.clim.2004.02.012.CrossRefPubMedGoogle Scholar
  7. 7.
    Allen, K. L., Fonseca, F. V., Betapudi, V., Willard, B., Zhang, J., and McCrae, K. R. (2012) A novel pathway for human endothelial cell activation by antiphospholipid/anti-ß2 glycoprotein I antibodies, Blood, 119, 884–893, doi:  https://doi.org/10.1182/blood-2011-03-344671.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Sikara, M. P., Routsias, J. G., Samiotaki, M., Panayotou, G., Moutsopoulos, H. M., and Vlachoyiannopoulos, P. G. (2010) ß2 glycoprotein I (ß2GPI) binds platelet factor 4 (PF4): implications for the pathogenesis of antiphospholipid syndrome, Blood, 115, 713–723, doi:  https://doi.org/10.1182/blood-2009-03-206367.CrossRefPubMedGoogle Scholar
  9. 9.
    Chamley, L. W., Allen, J. L., and Johnson, P. M. (1997) Synthesis of ß2 glycoprotein 1 by the human placenta, Placenta, 18, 403–410, doi:  https://doi.org/10.1016/S0143-4004(97)80040-9.CrossRefPubMedGoogle Scholar
  10. 10.
    Agar, C., van Os, G. M., Morgelin, M., Sprenger, R. R., Marquart, J. A., Urbanus, R. T., Derksen, R. H., Meijers, J. C., and de Groot, P. G. (2010) ß2-Glycoprotein I can exist in 2 conformations: implications for our understanding of the antiphospholipid syndrome, Blood, 116, 1336–1343, doi:  https://doi.org/10.1182/blood-2009-12-260976.CrossRefPubMedGoogle Scholar
  11. 11.
    Gardiner, C., Hills, J., Machin, S. J., and Cohen, H. (2013) Diagnosis of antiphospholipid syndrome in routine clinical practice, Lupus, 22, 18–25, doi:  https://doi.org/10.1177/0961203312460722.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Vora, S. K., Asherson, R. A., and Erkan, D. (2006) Catastrophic antiphospholipid syndrome, J. Intensive Care Med., 21, 144–159, doi:  https://doi.org/10.1007/s11420-008-9103-6.CrossRefPubMedGoogle Scholar
  13. 13.
    Cervera, R., Serrano, R., Pons-Estel, G. J., Ceberio-Hualde, L., Shoenfeld, Y., de Ramon, E., Buonaiuto, V., Jacobsen, S., Zeher, M. M., Tarr, T., Tincani, A., Taglietti, M., Theodossiades, G., Nomikou, E., Galeazzi, M., Bellisai, F., Meroni, P. L., Derksen, R. H., de Groot, P. G., Baleva, M., Mosca, M., Bombardieri, S., Houssiau, F., Gris, J. C., Quere, I., Hachulla, E., Vasconcelos, C., Fernandez-Nebro, A., Haro, M., Amoura, Z., Miyara, M., Tektonidou, M., Espinosa, G., Bertolaccini, M. L., and Khamashta, M. A. (2015) Euro-Phospholipid Project, morbidity and mortality in the antiphospholipid syndrome during a 10-year period: a multicentre prospective study of 1000 patients, Ann. Rheum. Dis., 74, 1011–1018, doi:  https://doi.org/10.1136/annrheumdis-2013-204838.CrossRefPubMedGoogle Scholar
  14. 14.
    Cuadrado, M. J., Lopez-Pedrera, C., Khamashta, M. A., Camps, M. T., Tinahones, F., Torres, A., Hughes, G. R., and Velasco, F. (1997) Thrombosis in primary antiphospholipid syndrome: a pivotal role for monocyte tissue factor expression, Arthritis Rheum., 40, 834–841, doi:  https://doi.org/10.1002/1529-0131(199705)40:5<834::AID-ART8>3.0.CO;2-#.CrossRefPubMedGoogle Scholar
  15. 15.
    Breen, K. A., Seed, P., Parmar, K., Moore, G. W., Stuart-Smith, S. E., and Hunt, B. J. (2012) Complement activation in patients with isolated antiphospholipid antibodies or primary antiphospholipid syndrome, Thromb. Haemost., 107, 423–429, doi:  https://doi.org/10.1160/TH11-08-0554.CrossRefPubMedGoogle Scholar
  16. 16.
    Colosanti, T., Alessandri, C., Capozzi, A., Sorice, M., Delunardo, F., Longo, A., Pierdominici, M., Conti, F., Truglia, S., Siracusano, A., Valesini, G., Ortona, E., and Margutti, P. (2012) Autoantibodies specific to a peptide of ß2-glycoprotein I cross-react with TLR4, inducing a proinflammatory phenotype in endothelial cells and monocytes, Blood, 120, 3360–3370, doi:  https://doi.org/10.1182/blood-2011-09-378851.CrossRefGoogle Scholar
  17. 17.
    Xia, L., Xie, H., Yu, Y., Zhou, H., Wang, T., and Yan, J. (2016) The effects of NF-κB and c-Jun/AP-1 on the expression of prothrombotic and proinflammatory molecules induced by anti-ß2GPI in mouse, PLoS One, 11, 1–17, doi:  https://doi.org/10.1371/journal.pone.0147958.Google Scholar
  18. 18.
    Gropp, K., Weber, N., Reuter, M., Micklisch, S., Kopka, I., Hallstrom, T., and Skerka, C. (2011) ß2-Glycoprotein I, the major target in antiphospholipid syndrome, is a special human complement regulator, Blood, 118, 2774–2783, doi:  https://doi.org/10.1182/blood-2011-02-339564.CrossRefPubMedGoogle Scholar
  19. 19.
    Fischetti, F., Durigutto, P., Pellis, V., Debeus, A., Macor, P., Bulla, R., Bossi, F., Ziller, F., Sblattero, D., Meroni, P., and Tedesco, F. (2005) Thrombus formation induced by antibodies to ß2-glycoprotein I is complement dependent and requires a priming factor, Blood, 106, 2340–2346, doi:  https://doi.org/10.1182/blood-2005-03-1319.CrossRefPubMedGoogle Scholar
  20. 20.
    Redecha, P., Tilley, R., Tencati, M., Salmon, J. E., Kirchhofer, D., Mackman, N., and Girardi, G. (2007) Tissue factor: a link between C5a and neutrophil activation in antiphospholipid antibody induced fetal injury, Blood, 110, 2423–2431, doi:  https://doi.org/10.1182/blood-2007-01-070631.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Galli, M., Willems, G. M., Rosing, J., Janssen, R. M., Govers-Riemslag, J. W., Comfurius, P., Barbui, T., Zwaal, R. F., and Bevers, E. M. (2005) Anti-prothrombin IgG from patients with anti-phospholipid antibodies inhibits the inactivation of factor Va by activated protein C, Br. J. Haematol., 129, 240–247, doi:  https://doi.org/10.1111/j.1365-2141.2005.05438.x.CrossRefPubMedGoogle Scholar
  22. 22.
    Ieko, M., Yoshida, M., Naito, S., Nakabayashi, T., Kanazawa, K., Mizukami, K., Mukai, M., Atsumi, T., and Koike, T. (2010) Increase in plasma thrombin-activatable fibrinolysis inhibitor may not contribute to thrombotic tendency in antiphospholipid syndrome because of inhibitory potential of antiphospholipid antibodies toward TAFI activation, Int. J. Hematol., 91, 776–783, doi:  https://doi.org/10.1007/s12185-010-0590-0.CrossRefPubMedGoogle Scholar
  23. 23.
    Lean, S. Y., Ellery, P., Ivey, L., Thom, J., Oostryck, R., Leahy, M., Baker, R. I., and Adams, M. J. (2006) The effects of tissue factor pathway inhibitor and anti-ß2-glycoprotein-I IgG on thrombin generation, Haematologica, 91, 1360–1366.PubMedGoogle Scholar
  24. 24.
    Yunt, B. J., Wu, X. X., de Laat, B., Arslan, A. A., Stuart-Smith, S., and Rand, J. H. (2011) Resistance to annexin A5 anticoagulant activity in women with histories for obstetric antiphospholipid syndrome, Am. J. Obstet. Gynecol., 205, 485.e17–485.e23, doi:  https://doi.org/10.1016/j.ajog.2011.06.019.CrossRefGoogle Scholar
  25. 25.
    Du, V. X., Kelchtermans, H., de Groot, P. G., and de Laat, B. (2013) From antibody to clinical phenotype, the black box of the antiphospholipid syndrome: pathogenic mechanisms of the antiphospholipid syndrome, Thromb. Res., 132, 319–326, doi:  https://doi.org/10.1016/j.thromres.2013.07.023.CrossRefPubMedGoogle Scholar
  26. 26.
    Romay-Penabad, Z., Montiel-Manzano, M. G., Shilagard, T., Papalardo, E., Vargas, G., Deora, A. B., Wang, M., Jacovina, A. T., Garcia-Latorre, E., Reyes-Maldonado, E., Hajjar, K. A., and Pierangeli, S. S. (2009) Annexin A2 is involved in antiphospholipid antibody-mediated pathogenic effects in vitro and in vivo, Blood, 114, 3074–3083, doi:  https://doi.org/10.1182/blood-2008-11-188698.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Ulrich, V., Gelber, S. E., Vukelic, M., Sacharidou, A., Herz, J., Urbanus, R. T., de Groot, P. G., Natale, D. R., Harihara, A., Redecha, P., Abrahams, V. M., Shaul, P. W., Salmon, J. E., and Mineo, C. (2016) ApoE receptor 2 mediation of trophoblast dysfunction and pregnancy complications induced by antiphospholipid antibodies in mice, Arthritis Rheumatol., 68, 730–739, doi:  https://doi.org/10.1002/art.39453.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Pennings, M. T., van Lummel, M., Derksen, R. H., Urbanus, R. T., Romijn, R. A., Lenting, P. J., and de Groot, P. G. (2006) Interaction of ß2-glycoprotein I with members of the low density lipoprotein receptor family, J. Thromb. Haemost., 4, 1680–1690, doi:  https://doi.org/10.1111/j.1538-7836.2006.02036.x.CrossRefPubMedGoogle Scholar
  29. 29.
    Satta, N., Kruithof, E. R., Fickentscher, C., Dunoyer-Geindre, S., Boehlen, F., Reber, G., Burger, D., and de Moerloose, P. (2011) Toll-like receptor 2 mediates the activation of human monocytes and endothelial cells by antiphospholipid antibodies, Blood, 117, 5523–5531, doi:  https://doi.org/10.1182/blood-2010-11-316158.CrossRefPubMedGoogle Scholar
  30. 30.
    Pierangeli, S. S., Vega-Ostertag, M. E., Raschi, E., Liu, X., Romay-Penabad, Z., De Micheli, V., Galli, M., Moia, M., Tincani, A., Borghi, M. O., Nguyen-Oghalai, T., and Meroni, P. L. (2007) Toll-like receptor and antiphospholipid-mediated thrombosis: in vivo studies, Ann. Rheum. Dis., 66, 1327–1333, doi:  https://doi.org/10.1136/ard.2006.065037.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Urbanus, R. T., Pennings, M. T., Derksen, R. H., and de Groot, P. G. (2008) Platelet activation by dimeric ß2-glycoprotein I requires signaling via both glycoprotein Iba and apolipoprotein E receptor 2', J. Thromb. Haemost., 6, 1405–1412, doi:  https://doi.org/10.1111/j.1538-7836.2008.03021.x.CrossRefPubMedGoogle Scholar
  32. 32.
    Tanimura, K., Jin, H., Suenaga, T., Morikami, S., Arase, N., Kishida, K., Hirayasu, K., Kohyama, M., Ebina, Y., Yasuda, S., Horita, T., Takasugi, K., Ohmura, K., Yamamoto, K., Katayama, I., Sasazuki, T., Lanier, L. L., Atsumi, T., Yamada, H., and Arase, H. (2015) ß2-Glycoprotein I/HLA class II complexes are novel autoantigens in antiphospholipid syndrome, Blood, 125, 2835–2844, doi:  https://doi.org/10.1182/blood-2014-08-593624.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Domenico Sebastiani, G., Minisola, G., and Galeazzi, M. (2003) HLA class II alleles and genetic predisposition to the antiphospholipid syndrome, Autoimmun. Rev., 2, 387–394, doi:  https://doi.org/10.1016/S1568-9972(03)00068-5.CrossRefPubMedGoogle Scholar
  34. 34.
    Collins, T., Krman, A. J., Wake, C. T., Boss, J. M., Kappes, D. J., Fiers, W., Ault, K. A., Gimbrone, M. A., Jr., Strominger, J. L., and Pober, J. S. (1984) Immune interferon activates multiple class II major histocompatibility complex genes and the associated invariant chain gene in human endothelial cells and dermal fibroblasts, Proc. Natl. Acad. Sci. USA, 81, 4917–4921, doi:  https://doi.org/10.1073/pnas.81.15.4917.CrossRefPubMedGoogle Scholar
  35. 35.
    Girardi, G., Berman, J., Redecha, P., Spruce, L., Thurman, J. M., Kraus, D., Hollmann, T. J., Casali, P., Caroll, M. C., Wetsel, R. A., Lambris, J. D., Holers, V. M., and Salmon, J. E. (2003) Complement C5a receptors and neutrophils mediate fetal injury in the antiphospholipid syndrome, J. Clin. Invest., 112, 1644–1654, doi:  https://doi.org/10.1172/JCI18817.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Kasahara, H., Matsuura, E., Kaihara, K., Yamamoto, D., Kobayashi, K., Inagaki, J., Ichikawa, K., Tsutsumi, A., Yasuda, S., Atsumi, T., Yasuda, T., and Koike, T. (2005) Antigenic structures recognized by anti-ß2-glycoprotein I auto-antibodies, Int. Immunol., 17, 1533–1542, doi:  https://doi.org/10.1093/intimm/dxh330.CrossRefPubMedGoogle Scholar
  37. 37.
    Xia, L., Zhou, H., Hu, L., Xie, H., Wang, T., Xu, Y., Liu, J., Zhang, X., and Yan, J. (2013) Both NF-κB and c-Jun/AP-1 involved in anti-ß2GPI/ß2GPI-induced tissue factor expression in monocytes, Thromb. Haemost., 109, 643–651, doi:  https://doi.org/10.1160/TH12-09-0655.CrossRefPubMedGoogle Scholar
  38. 38.
    Mackman, N. (1995) Regulation of the tissue factor gene, FASEB J., 9, 883–889, doi:  https://doi.org/10.1096/fasebj.9.10.7615158.CrossRefPubMedGoogle Scholar
  39. 39.
    Boles, J., and Mackman, N. (2010) Role of tissue factor in thrombosis in antiphospholipid antibody syndrome, Lupus, 19, 370–378, doi:  https://doi.org/10.1177/0961203309360810.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Vega-Ostertag, M., Harris, E. N., and Puerangeli, S. S. (2004) Intercellular events in platelet activation induced by antiphospholipid antibodies in the presence of low doses of thrombin, Arthritis Rheum., 50, 2911–2919, doi:  https://doi.org/10.1002/art.20434.CrossRefPubMedGoogle Scholar
  41. 41.
    Vega-Ostertag, M., Casper, K., Swerlick, R., Ferrara, D., Harris, E. N., and Pierangeli, S. S. (2005) Involvement of p38 MAPK in the up-regulation of tissue factor on endothelial cells by antiphospholipid antibodies, Arthritis Rheum., 52, 1545–1554, doi:  https://doi.org/10.1002/art.21009.CrossRefPubMedGoogle Scholar
  42. 42.
    Zhou, H., Sheng, L., Wang, H., Xie, H., Mu, Y., Wang, T., and Yan, J. (2013) Anti-ß2GPI/ß2GPI stimulates activation of THP-1 cells through TLR4/MD-2/MyD88 and NF-κB signaling pathways, Thromb. Res., 132, 742–749, doi:  https://doi.org/10.1016/j.thromres.2013.09.039.CrossRefPubMedGoogle Scholar
  43. 43.
    Canaud, G., Bienaime, F., Tabarin, F., Bataillon, G., Seilhean, D., Noel, L. H., Dragon-Durey, M. A., Snanoudj, R., Friedlander, G., Halbwachs-Mecarelli, L., Legendre, C., and Terzi, F. (2014) Inhibition of the mTORC pathway in the antiphospholipid syndrome, N. Engl. J. Med., 371, 303–312, doi:  https://doi.org/10.1056/NEJMoa1312890.CrossRefPubMedGoogle Scholar
  44. 44.
    Sciascia, S., Sanna, G., Murru, V., Roccatello, D., Khamashta, M. A., and Bertolaccini, M. L. (2014) Anti-prothrombin (aPT) and anti-phosphatidylserine/prothrombin (aPS/PT) antibodies and the risk of thrombosis in the antiphospholipid syndrome. A systematic review, Thromb. Haemost., 111, 354–364, doi:  https://doi.org/10.1160/TH13-06-0509.CrossRefPubMedGoogle Scholar
  45. 45.
    Gharavi, A. E., Wilson, W., and Pierangeli, S. (2003) The molecular basis of antiphospholipid syndrome, Lupus, 12, 579–583, doi:  https://doi.org/10.1191/0961203303lu448rr.CrossRefPubMedGoogle Scholar
  46. 46.
    Blank, M., Krause, I., Fridkin, M., Keller, N., Kopolovic, J., Goldberg, I., Tobar, A., and Shoenfeld, Y. (2002) Bacterial induction of autoantibodies to ß2-glycoprotein-I accounts for the infectious etiology of antiphospholipid syndrome, J. Clin. Invest., 109, 797–804, doi:  https://doi.org/10.1172/JCI12337.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Miyakis, S., Giannakopoulos, B., and Krilis, S. A. (2004) Beta 2 glycoprotein I – function in health and disease, Thromb. Res., 114, 335–346, doi:  https://doi.org/10.1016/j.thromres.2004.07.017.CrossRefPubMedGoogle Scholar
  48. 48.
    Iverson, G. M., Victoria, E. J., and Marquis, D. M. (1998) Anti-ß2 glycoprotein I (ß2GPI) autoantibodies recognize an epitope on the first domain of ß2GPI, Proc. Natl. Acad. Sci. USA, 95, 15542–15546.CrossRefPubMedGoogle Scholar
  49. 49.
    Andreoli, L., Chighizola, C. B., Nalli, C., Gerosa, M., Borghi, M. O., Pregnolato, F., Grossi, C., Zanola, A., Allegri, F., Norman, G. L., Mahler, M., Meroni, P. L., and Tincani, A. (2015) Clinical characterization of antiphospholipid syndrome by detection of IgG antibodies against ß2-glycoprotein I domain 1 and domain 4/5: ratio of anti-domain1 to anti-domain 4/5 as a useful new biomarker for antiphospholipid syndrome, Arthritis Rheumatol., 67, 2196–2204, doi:  https://doi.org/10.1002/art.39187.CrossRefPubMedGoogle Scholar
  50. 50.
    Agostinis, C., Durigutto, P., Sblattero, D., Borghi, M. O., Grossi, C., Guida, F., Bulla, R., Macor, P., Pregnolato, F., Meroni, P. L., and Tedesco, F. (2014) A non-complement-fixing antibody to ß2 glycoprotein I as a novel therapy for antiphospholipid syndrome, Blood, 123, 3478–3487, doi:  https://doi.org/10.1182/blood-2013-11-537704.CrossRefPubMedGoogle Scholar
  51. 51.
    Iannou, Y., Romay-Penabad, Z., Pericleous, C., Giles, I., Papalardo, E., Vargas, G., Shilagard, T., Latchman, D. S., Isenberg, D. A., Rahman, A., and Pierangeli, S. (2009) In vivo inhibition of antiphospholipid antibody-induced pathogenicity utilizing the antigenic target peptide domain I of ß2-glycoprotein I: proof of concept, J. Thromb. Haemost., 7, 833–842, doi:  https://doi.org/10.1111/j.1538-7836.2009.03316.x.CrossRefGoogle Scholar
  52. 52.
    Harris, E. N., Gharavi, A. E., Patel, S. P., and Hughes, G. R. V. (1987) Evaluation of the anti-cardiolipin antibody test: report of an international workshop held 4 April 1986, Clin. Exp. Immunol., 68, 215–222.PubMedPubMedCentralGoogle Scholar
  53. 53.
    Gharavi, A. E., Harris, E. N., Asherson, R. A., and Hughes, G. R. V. (1987) Anticardiolipin antibodies: isotype distribution and phospholipid specificity, Ann. Rheum. Dis., 46, 1–6, doi:  https://doi.org/10.1136/ard.46.1.1.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Loizou, S., Mackworth-Young, C. G., Cofiner, C., and Walport, M. J. (1990) Heterogeneity of binding reactivity to different phospholipids of antibodies from patients with systemic lupus erythematosus (SLE) and with syphilis, Clin. Exp. Immunol., 80, 171–176, doi:  https://doi.org/10.1111/j.1365-2249.1990.tb05228.x.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Vinuesa, C. G., and Chang, Ph.-P. (2013) Innate B cell helpers reveal novel types of antibody responses, Nat. Immunol., 14, 119–126, doi:  https://doi.org/10.1038/ni.2511.CrossRefPubMedGoogle Scholar
  56. 56.
    Ansel, K. M., Ngo, V. N., Hyman, P. L., Luther, S. A., Forster, R., Sedgwick, J. D., Browning, J. L., Lipp, M., and Cyster, J. G. (2000) A chemokine-driven positive feedback loop organizes lymphoid follicles, Nature, 406, 309–314, doi:  https://doi.org/10.1038/35018581.CrossRefPubMedGoogle Scholar
  57. 57.
    Gunn, M. D., Tangemann, K., Tam, C., Cyster, J. G., Rosen, S. D., and Williams, L. T. (1998) A chemokine expressed in lymphoid high endothelial venules promotes the adhesion and chemotaxis of naive T lymphocytes, Proc. Natl. Acad. Sci. USA, 95, 258–263, doi:  https://doi.org/10.1073/pnas.95.1.258.CrossRefPubMedGoogle Scholar
  58. 58.
    Batista, F. D., and Harwood, N. E. (2009) The who, how and where of antigen presentation to B cells, Nat. Rev. Immunol., 9, 155–227, doi:  https://doi.org/10.1038/nri2454.Google Scholar
  59. 59.
    Ebert, L. M., Horn, M. P., Lang, A. B., and Moser, B. (2004) B cells alter the phenotype and function of follicular-homing CXCR5+ T cells, Eur. J. Immunol., 34, 3562–3571, doi:  https://doi.org/10.1002/eji.200425478.CrossRefPubMedGoogle Scholar
  60. 60.
    Celli, S., Lemaitre, F., and Bousso, P. (2007) Real-time manipulation of T cell-dendritic cell interactions in vivo reveals the importance of prolonged contacts for CD4+ T cell activation, Immunity, 27, 625–634, doi:  https://doi.org/10.1016/j.immuni.2007.08.018.CrossRefPubMedGoogle Scholar
  61. 61.
    Fazilleau, N., McHeyzer-Williams, L. J., Rosen, H., and McHeyzer-Williams, M. G. (2009) The function of follicular helper T cells is regulated by the strength of T cell antigen receptor binding, Nat. Immunol., 10, 375–384, doi:  https://doi.org/10.1038/ni.1704.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Walker, L. S., Gulbranson-Judge, A., Flynn, S., Brocker, T., Raykundalia, C., Goodall, M., Forster, R., Lipp, M., and Lane, P. (1999) Compromised OX40 function in CD28-deficient mice is linked with failure to develop CXC chemokine receptor 5-positive CD4 cells and germinal centers, J. Exp. Med., 190, 1115–1122, doi:  https://doi.org/10.1084/jem.190.8.1115.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Okada, T., Miller, M. J., Parker, I., Krummel, M. F., Neighbors, M., Hartley, S. B., O’Garra, A., Cahalan, M. D., and Cyster, J. G. (2005) Antigen-engaged B cells undergo chemotaxis toward the T zone and form motile conjugates with helper T cells, PLoS Biol., 3, e150, doi:  https://doi.org/10.1371/journal.pbio.0030150.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    McHeyzer-Williams, L. J., Pelletier, N., Mark, L., Fazilleau, N., and McHeyzer-Williams, M. G. (2009) Follicular helper T cells as cognate regulators of cell immunity, Curr. Opin. Immunol., 21, 266–273, doi:  https://doi.org/10.1016/j.coi.2009.05.010.CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Johnston, R. J., Poholek, A. C., DiToro, D., Yusuf, I., Eto, D., Barnett, B., Dent, A. L., Craft, J., and Crotty, S. (2009) Bcl6 and Blimp-1 are reciprocal and antagonistic regulators of T follicular helper cell differentiation, Science, 325, 1006–1010, doi:  https://doi.org/10.1126/science.1175870.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Suan, D., Nguyen, A., Moran, I., Bourne, K., Hermes, J. R., Arshi, M., Hampton, H. R., Tomura, M., Miwa, Y., Kelleher, A. D., Kaplan, W., Deenick, E. K., Tangye, S. G., Brink, R., Chtanova, T., and Phan, T. G. (2015) T follicular helper cells have distinct modes of migration and molecular signatures in naive and memory immune responses, Immunity, 42, 704–718, doi:  https://doi.org/10.1016/j.immuni.2015.03.002.CrossRefPubMedGoogle Scholar
  67. 67.
    Klein, U., and Dalla-Favera, R. (2008) Germinal centers: role in B-cell physiology and malignancy, Nat. Rev. Immunol., 8, 22–33, doi:  https://doi.org/10.1038/nri2217.CrossRefPubMedGoogle Scholar
  68. 68.
    Victora, G. D., and Nussenzweig, M. C. (2012) Germinal centers, Annu. Rev. Immunol., 30, 429–457, doi:  https://doi.org/10.1146/annurev.iy.12.040194.001001.CrossRefPubMedGoogle Scholar
  69. 69.
    Gitlin, A. D., Shulman, Z., and Nussenzweig, M. C. (2014) Clonal selection in the germinal centre by regulated proliferation and hypermutation, Nature, 509, 637–640, doi:  https://doi.org/10.1038/nature13300.CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Crotty, S. (2011) Follicular helper CD4 T cells (TFH), Annu. Rev. Immunol., 29, 621–663, doi:  https://doi.org/10.1146/annurev-immunol-031210-101400.CrossRefPubMedGoogle Scholar
  71. 71.
    Dufaud, C. R., McHeyzer-Williams, L. J., and McHeyzer-Williams, M. G. (2017) Deconstructing the germinal center, one cell at a time, Curr. Opin. Immunol., 45, 112–118, doi:  https://doi.org/10.1016/j.coi.2017.03.007.CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Allen, C. D. C., Okada, T., Tang, H. L., and Cyster, J. G. (2007) Imaging of germinal center selection events during affinity maturation, Science, 315, 528–531, doi:  https://doi.org/10.1126/science.1136736.CrossRefPubMedGoogle Scholar
  73. 73.
    Shapiro-Shelef, M., and Calame, K. (2005) Regulation of plasma cell development, Nat. Rev. Immunol., 5, 230–242, doi:  https://doi.org/10.1038/nri1572.CrossRefPubMedGoogle Scholar
  74. 74.
    Mendez, L. M., Polo, J. M., Yu, J. J., Krupski, M., Ding, B. B., Melnick, A., and Ye, B. H. (2008) CtBP is an essential corepressor for BCL6 autoregulation, Mol. Cell. Biol., 28, 2175–2186, doi:  https://doi.org/10.1128/MCB.01400-07.CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Shapiro-Shelef, M., Lin, K. I., McHeyzer-Williams, L. J., Liao, J., McHeyzer-Williams, M. G., and Calame, K. (2003) Blimp-1 is required for the formation of immunoglobulin secreting plasma cells and pre-plasma memory B cells, Immunity, 19, 607–620, doi:  https://doi.org/10.1016/S1074-7613(03)00267-X.CrossRefPubMedGoogle Scholar
  76. 76.
    Reinhardt, R., Liang, H., and Locksley, R. (2009) Cytokine-secreting follicular T cells shape the antibody repertoire, Nat. Immunol., 10, 385–393, doi:  https://doi.org/10.1038/ni.1715.CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Scaerli, P., Willimann, K., Lang, A. B., Lipp, M., Loetscher, P., and Moser, B. (2000) CXC chemokine receptor 5 expression defines follicular homing T cells with B cell helper function, J. Exp. Med., 192, 553–562, doi:  https://doi.org/10.1084/jem.192.11.1553.Google Scholar
  78. 78.
    Good-Jacobson, K. L., Szumilas, C. G., Chen, L., Sharpe, A. H., Tomayko, M. M., and Shlomchik, M. J. (2010) PD1 regulates germinal center B cell survival and the formation and affinity of long-lived plasma cells, Nat. Immunol., 11, 535–542, doi:  https://doi.org/10.1038/ni.1877.CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Linterman, M. A., Beaton, L., Yu, D., Ramiscal, R. R., Srivastava, M., Hogan, J. J., Verma, N. K., Smyth, M. J., Rigby, R. J., and Vinuesa, C. G. (2010) IL-21 acts directly on B cells to regulate Bcl-6 expression and germinal center responses, J. Exp. Med., 207, 353–363, doi:  https://doi.org/10.1084/jem.20091738.CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Bendelac, A., Savage, P. B., and Teyton, L. (2007) The biology of NKT cells, Annu. Rev. Immunol., 25, 297–336, doi:  https://doi.org/10.1146/annurev.immunol.25.022106.141711.CrossRefPubMedGoogle Scholar
  81. 81.
    Morita, M., Natori, T., Sakai, T., Sawa, E., Yamaji, K., Koezuka, Y., Kobayashi, E., and Fukushima, H. (1995) Structure-activity relationship of α-galactosylceramides against B16-bearing mice, J. Med. Chem., 38, 2176–2187, doi:  https://doi.org/10.1021/jm00012a018.CrossRefPubMedGoogle Scholar
  82. 82.
    Kawano, T., Cui, J., Koezuka, Y., Toura, I., Kaneko, Y., Motoki, K., Ueno, H., Nakagawa, R., Sato, H., Kondo, E., Koseki, H., and Taniguchi, M. (1997) CD1d-restricted and TCR-mediated activation of Vα14 NKT cells by glycosylceramides, Science, 278, 1626–1629, doi:  https://doi.org/10.1126/science.278.5343.1626.CrossRefPubMedGoogle Scholar
  83. 83.
    Barral, D. C., and Brenner, M. B. (2007) CD1 antigen presentation: how it works, Nat. Rev. Immunol., 7, 929–941, doi:  https://doi.org/10.1038/nri2191.CrossRefPubMedGoogle Scholar
  84. 84.
    Godfrey, D. I., Rossjohn, J., and McCluskey, J. (2008) The fidelity, occasional promiscuity, and versatility of T cell receptor recognition, Immunity, 28, 304–314, doi:  https://doi.org/10.1016/j.immuni.2008.02.004.CrossRefPubMedGoogle Scholar
  85. 85.
    Brossay, L., Chioda, M., Burdin, N., Koezuka, Y., Casorati, G., Dellabona, P., and Kronenberg, M. (1998) CD1d-mediated recognition of an α-galactosylceramide by natural killer T cells highly conserved through mammalian evolution, J. Exp. Med., 188, 1521–1528, doi:  https://doi.org/10.1084/jem.188.8.1521.CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    De Libero, G., and Mori, L. (2006) Mechanisms of lipid-antigen generation and presentation to T cells, Trends. Immunol., 27, 485–492, doi:  https://doi.org/10.1016/j.it.2006.08.001.CrossRefPubMedGoogle Scholar
  87. 87.
    Macho-Fernandez, E., and Brigl, M. (2015) The extended family of CD1d-restricted NKT cells: sifting through a mixed bag of TCRs, antigens, and functions, Front. Immunol., 6, 1–19, doi:  https://doi.org/10.3389/fimmu.2015.00362.CrossRefGoogle Scholar
  88. 88.
    Kronenberg, M. (2005) Toward an understanding of NKT cell biology: progress and paradoxes, Annu. Rev. Immunol., 23, 877–900, doi:  https://doi.org/10.1146/annurev.immunol.23.021704.115742.CrossRefPubMedGoogle Scholar
  89. 89.
    Fais, F., Morabito, F., Stelitano, C., Callea, V., Zanardi, S., Scudeletti, M., Varese, P., Ciccone, E., and Grossi, C. E. (2004) CD1d is expressed on B-chronic lymphocytic leukemia cells and mediates α-galactosylceramide presentation to natural killer T lymphocytes, Int. J. Cancer, 109, 402–411, doi:  https://doi.org/10.1002/ijc.11723.CrossRefPubMedGoogle Scholar
  90. 90.
    Boyson, J. E., Rybalov, B., Koopman, L. A., Exley, M., Balk, S. P., Racke, F. K., Schatz, F., Masch, R., Wilson, S. B., and Strominger, J. L. (2002) CD1d and invariant NKT cells at the human maternal–fetal interface, Proc. Natl. Acad. Sci. USA, 99, 13741–13746, doi:  https://doi.org/10.1073/pnas.162491699.CrossRefPubMedGoogle Scholar
  91. 91.
    Barral, P., Exkl-Dorna, J., Harwood, N. E., De Santo, C., Salio, M., Illarionov, P., Besra, G. S., Cerundolo, V., and Batista, F. D. (2008) B cell receptor-mediated uptake of CD1d-restricted antigen augments antibody responses by recruiting invariant NKT cell help in vivo, Proc. Natl. Acad. Sci. USA, 105, 8345–8350, doi:  https://doi.org/10.1073/pnas.0802968105.CrossRefPubMedGoogle Scholar
  92. 92.
    Leadbetter, E. A., Brigl, M., Illarionov, P., Cohen, N., Luteran, M. C., Pillai, S., Besra, G. S., and Brenner, M. B. (2008) NKT cells provide lipid antigen-specific cognate help for B cells, Proc. Natl. Acad. Sci. USA, 105, 8339–8344, doi:  https://doi.org/10.1073/pnas.0801375105.CrossRefPubMedGoogle Scholar
  93. 93.
    Dellabona, P., Abrignani, S., and Casorati, G. (2014) iNKT cells help to B cells: a cooperative job between innate and adaptive immune responses, Eur. J. Immunol., 44, 2230–2237, doi:  https://doi.org/10.1002/eji.201344399.CrossRefPubMedGoogle Scholar
  94. 94.
    Vomhof-DeKrey, E. E., Yates, J., and Leadbetter, E. A. (2014) Invariant NKT cells provide innate and adaptive help for B cells, Curr. Opin. Immunol., 28, 12–17, doi:  https://doi.org/10.1016/j.coi.2014.01.007.CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    Chang, P. P., Barral, P., Fitch, J., Pratama, A., Ma, C. S., Kallies, A., Hogan, J. J., Cerundolo, V., Tangye, S. G., Bittman, R., Nutt, S. L., Brink, R., Godfrey, D. I., Batista, F. D., and Vinuesa, C. G. (2012) Identification of Bcl-6-dependent follicular helper NKT cells that provide cognate help for B cell responses, Nat. Immunol., 13, 35–43, doi:  https://doi.org/10.1038/ni.2166.CrossRefGoogle Scholar
  96. 96.
    King, I. L., Fortier, A., Tighe, M., Dibble, J., Watts, G. F., Veerapen, N., Haberman, A. M., Besra, G. S., Mohrs, M., Brenner, M. B., and Leadbetter, E. A. (2012) Invariant natural killer T cells direct B cell responses to cognate lipid antigen in an IL-21-dependent manner, Nat. Immunol., 13, 44–50, doi:  https://doi.org/10.1038/ni.2172.CrossRefGoogle Scholar
  97. 97.
    Mattner, J., Savage, P. B., Leung, P., Oertelt, S. S., Wang, V., Trivedi, O., Scanlon, S. T., Pendem, K., Teyton, L., Hart, J., Ridgway, W. M., Wicker, L. S., Gershwin, M. E., and Bendelac, A. (2008) Liver autoimmunity triggered by microbial activation of natural killer T cells, Cell Host Microbe, 3, 304–315, doi:  https://doi.org/10.1016/j.chom.2008.03.009.CrossRefPubMedPubMedCentralGoogle Scholar
  98. 98.
    Fujii, S., Shimizu, K., Smith, C., Bonifaz, L., and Steinman, R. M. (2003) Activation of natural killer T cells by α-galactosylceramide rapidly induces the full maturation of dendritic cells in vivo and thereby acts as an adjuvant for combined CD4 and CD8 T cell immunity to a co-administered protein, J. Exp. Med., 198, 267–279, doi:  https://doi.org/10.1084/jem.20030324.CrossRefPubMedPubMedCentralGoogle Scholar
  99. 99.
    Nair, S., Boddupalli, C. S., Verma, R., Liu, J., Yang, R., Pastores, G. M., Mistry, P. K., and Dhodapkar, M. V. (2015) Type II NKT-TFH cells against Gaucher lipids regulate B-cell immunity and inflammation, Blood, 125, 1256–1271, doi:  https://doi.org/10.1182/blood-2014-09-600270.CrossRefPubMedPubMedCentralGoogle Scholar
  100. 100.
    Mistry, P. K., Taddei, T., von Dahl, S., and Rosenblom, B. E. (2013) Gaucher disease and malignancy: a model for cancer pathogenesis in an inborn error of metabolism, Crit. Rev. Oncol., 18, 235–246, doi:  https://doi.org/10.1615/CritRevOncog.2013006145.CrossRefGoogle Scholar
  101. 101.
    Zeng, S. G., Ghnewa, Y. G., O’Reilly, V. P., Lyons, V. G., Atzberger, A., Hogan, A. E., Exley, M. A., and Doherty, D. G. (2013) Human invariant NKT cell subsets differentiation, antibody production, and T cell stimulation by B cells in vitro, J. Immunol., 191, 1666–1676, doi:  https://doi.org/10.4049/jimmunol.1202223.CrossRefPubMedPubMedCentralGoogle Scholar
  102. 102.
    Exley, M. A., Tahir, S. M., Cheng, O., Shaulov, A., Joyce, R., Avigan, D., Sackstein, R., and Balk, S. P. (2001) A major fraction of human bone marrow lymphocytes are Th2-like CD1d-reactive T cells that can suppress mixed lymphocyte responses, J. Immunol., 167, 5531–5534, doi:  https://doi.org/10.4049/jimmunol.167.10.5531.CrossRefPubMedGoogle Scholar
  103. 103.
    Gumperz, J. E., Roy, C., Makowska, A., Lum, D., Sugita, M., Podrebarac, T., Koezukan, Y., Porcelli, S. A., Cardell, S., Brenner, M. B., and Behar, S. M. (2000) Murine CD1d-restricted T cell recognition of cellular lipids, Immunity, 12, 211–221, doi:  https://doi.org/10.1016/S1074-7613(00)80174-0.CrossRefPubMedGoogle Scholar
  104. 104.
    Zhao, J., Weng, X., Bagchi, S., and Wang, C. R. (2014) Polyclonal type II natural killer T cells require PLZF and SAP for their development and contribute to CpG-mediated antitumor response, Proc. Natl. Acad. Sci. USA, 111, 2674–2679, doi:  https://doi.org/10.1073/pnas.1323845111.CrossRefPubMedGoogle Scholar
  105. 105.
    Weng, X., Liao, C. M., Bagchi, S., Cardell, S. L., Stein, P. L., and Weng, C. R. (2014) The adaptor protein SAP regulates type II NKT cell development, cytokine production and cytotoxicity against lymphoma, Eur. J. Immunol., 44, 3634–3657, doi:  https://doi.org/10.1002/eji.201444848.CrossRefGoogle Scholar
  106. 106.
    Sallo, M., Silk, J. D., Jones, E. Y., and Cerundolo, V. (2014) Biology of CD1- and MR1-restricted T cells, Annu. Rev. Immunol., 32, 323–366, doi:  https://doi.org/10.1146/annurev-immunol-032713-120243.CrossRefGoogle Scholar
  107. 107.
    Liu, K., Idoyaga, J., Charalambous, A., Fujii, S., Bonito, A., Mordoh, J., Wainstok, R., Bai, X. F., Liu, Y., and Steinman, R. M. (2005) Innate NKT lymphocytes confer superior adaptive immunity via tumor-capturing dendritic cells, J. Exp. Med., 202, 1507–1516, doi:  https://doi.org/10.1084/jem.20050956.CrossRefPubMedPubMedCentralGoogle Scholar
  108. 108.
    Allan, L. L., Hoefl, K., Zheng, D. J., Chung, B. K., Kozak, F. K., Tan, R., and van den Elzen, P. (2009) Apolipoprotein-mediated lipid antigen presentation in B cells provides a pathway for innate help by NKT cells, Blood, 114, 2411–2416, doi:  https://doi.org/10.1182/blood-2009-04-211417.CrossRefPubMedGoogle Scholar
  109. 109.
    Tonti, E., Galli, G., Malzone, C., Abrignani, S., Casorati, G., and Dellabona, P. (2009) NKT-cell help to B lymphocytes can occur independently of cognate interaction, Blood, 113, 370–376, doi:  https://doi.org/10.1182/blood-2008-06-166249.CrossRefPubMedGoogle Scholar
  110. 110.
    King, I. L., Amiel, E., Tighe, M., Mohrs, K., Veerapen, N., Besra, G., Mohrs, M., and Leadbetter, E. A. (2013) The mechanism of splenic invariant NKT cell activation dictates localization in vivo, J. Immunol., 191, 572–582, doi:  https://doi.org/10.4049/jimmunol.1300299.CrossRefPubMedPubMedCentralGoogle Scholar
  111. 111.
    Shah, H. B., Joshi, S. K., Rampuria, P., Devera, T. S., Lang, G. A., Stohl, W., and Lang, M. L. (2013) BAFF- and APRIL-dependent maintenance of antibody titers after immunization with T-dependent antigen and CD1d- binding ligand, J. Immunol., 191, 1154–1163, doi:  https://doi.org/10.4049/jimmunol.1300263.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Institute of Ecology and Genetics of Microorganisms, Perm Federal Research CenterUral Branch of the Russian Academy of SciencesPermRussia

Personalised recommendations