Biochemistry (Moscow)

, Volume 84, Issue 9, pp 992–1007 | Cite as

Mechanisms of Antiphospholipid Syndrome Induction: Role of NKT Cells

  • S. V. ShirshevEmail author


The review discusses the mechanisms of participation of natural killer T cells (NKT cells) in the induction of antiphospholipid antibodies (APA) that play a major pathogenetic role in the formation of antiphospholipid syndrome (APS), summarizes the data on APS pathogenesis, and presents modern concepts on the antibody formation involving follicular helper type II NK cells.


antiphospholipid syndrome antiphospholipid antibodies NK cells B lymphocytes humoral immune response 



anticardiolipin antibodies


activator protein 1


antiphospholipid antibodies


antigen-presenting cell


apolipoprotein E receptor 2


proliferation-inducing ligand


antiphospholipid syndrome


B-cell activating factor belonging to the TNF family


B-cell lymphoma 6 protein


B-cell receptor


β2-glycoprotein I


B-lymphocyte-induced maturation protein 1


catastrophic antiphospholipid syndrome


cluster of differentiation (leukocyte antigen)


dendritic cell


endothelial cell


follicular dendritic cell


follicular reticular cell


germinal center


human leukocyte antigen, DR isotype


inducible co-stimulator


ICOS ligand


interferon γ






lupus anticoagulant


low density and very low density lipoprotein receptor

mB cell

memory B cell


major histocompatibility complex


nuclear factor kappa-light-chain-enhancer of activated B cells


natural killer T cell


p38 mitogen-activated protein kinase


plasma cell


programmed cell death protein 1




SLAM (signaling lymphocytic activation molecule) adaptor protein (adaptor protein of CD150 and PD-1 molecule families)


T-cell receptor


thymus-dependent immune response


tissue factor


T follicular helper cell


tissue factor pathway inhibitor

Th cell

T helper cell


thymus-independent immune response


Toll-like receptor


tumor necrosis factor α


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


Funding. The work was performed as a part of the state task no. 01201353248 “Mechanisms of Immune System Regulation”.

Compliance with ethical norms. This article does not contain descriptions of studies with participation of animals or human subjects performed by the author.


  1. 1.
    Mehdi, A. A., Uthman, I., and Khamashta, M. (2010) Antiphospholipid syndrome: pathogenesis and a window of treatment opportunities in the future, Eur. J. Clin. Invest., 40, 451–464, doi: Scholar
  2. 2.
    Arachchillage, D. R. J., and Laffan, M. (2017) Pathogenesis and management of antiphospholipid syndrome, Br. J. Haematol., 178, 1–15, doi: Scholar
  3. 3.
    Ruiz-Irastorza, G., Crowther, M., Branch, W., and Khamashta, M. A. (2010) Antiphospholipid syndrome, Lancet, 376, 1498–1509, doi: Scholar
  4. 4.
    Miyakis, S., Lockshin, M. D., Atsumi, T., Branch, D. W., Brey, R. L., Cervera, R., Derksen, R. H., de Groot, P. G., Koike, T., Meroni, P. L., Reber, G., Shoenfeld, Y., Tincani, A., Vlachoyiannopoulos, P. G., and Krilis, S. A. (2006) International consensus statement on an update of the classification criteria for definite antiphospholipid syndrome (APS), J. Thromb. Haemost., 4, 295–306, doi: Scholar
  5. 5.
    Willis, R., and Pierangeli, S. S. (2013) Anti-ß2-glycoprotein I antibodies, Ann. N. Y. Acad. Sci., 1285, 44–58, doi: Scholar
  6. 6.
    Bas de Laat, H., Derksen, R. H., and de Groot, P. G. (2004) ß2-glycoprotein I, the playmaker of the antiphospholipid syndrome, Clin. Immunol., 112, 161–168, doi: Scholar
  7. 7.
    Allen, K. L., Fonseca, F. V., Betapudi, V., Willard, B., Zhang, J., and McCrae, K. R. (2012) A novel pathway for human endothelial cell activation by antiphospholipid/anti-ß2 glycoprotein I antibodies, Blood, 119, 884–893, doi: Scholar
  8. 8.
    Sikara, M. P., Routsias, J. G., Samiotaki, M., Panayotou, G., Moutsopoulos, H. M., and Vlachoyiannopoulos, P. G. (2010) ß2 glycoprotein I (ß2GPI) binds platelet factor 4 (PF4): implications for the pathogenesis of antiphospholipid syndrome, Blood, 115, 713–723, doi: Scholar
  9. 9.
    Chamley, L. W., Allen, J. L., and Johnson, P. M. (1997) Synthesis of ß2 glycoprotein 1 by the human placenta, Placenta, 18, 403–410, doi: Scholar
  10. 10.
    Agar, C., van Os, G. M., Morgelin, M., Sprenger, R. R., Marquart, J. A., Urbanus, R. T., Derksen, R. H., Meijers, J. C., and de Groot, P. G. (2010) ß2-Glycoprotein I can exist in 2 conformations: implications for our understanding of the antiphospholipid syndrome, Blood, 116, 1336–1343, doi: Scholar
  11. 11.
    Gardiner, C., Hills, J., Machin, S. J., and Cohen, H. (2013) Diagnosis of antiphospholipid syndrome in routine clinical practice, Lupus, 22, 18–25, doi: Scholar
  12. 12.
    Vora, S. K., Asherson, R. A., and Erkan, D. (2006) Catastrophic antiphospholipid syndrome, J. Intensive Care Med., 21, 144–159, doi: Scholar
  13. 13.
    Cervera, R., Serrano, R., Pons-Estel, G. J., Ceberio-Hualde, L., Shoenfeld, Y., de Ramon, E., Buonaiuto, V., Jacobsen, S., Zeher, M. M., Tarr, T., Tincani, A., Taglietti, M., Theodossiades, G., Nomikou, E., Galeazzi, M., Bellisai, F., Meroni, P. L., Derksen, R. H., de Groot, P. G., Baleva, M., Mosca, M., Bombardieri, S., Houssiau, F., Gris, J. C., Quere, I., Hachulla, E., Vasconcelos, C., Fernandez-Nebro, A., Haro, M., Amoura, Z., Miyara, M., Tektonidou, M., Espinosa, G., Bertolaccini, M. L., and Khamashta, M. A. (2015) Euro-Phospholipid Project, morbidity and mortality in the antiphospholipid syndrome during a 10-year period: a multicentre prospective study of 1000 patients, Ann. Rheum. Dis., 74, 1011–1018, doi: Scholar
  14. 14.
    Cuadrado, M. J., Lopez-Pedrera, C., Khamashta, M. A., Camps, M. T., Tinahones, F., Torres, A., Hughes, G. R., and Velasco, F. (1997) Thrombosis in primary antiphospholipid syndrome: a pivotal role for monocyte tissue factor expression, Arthritis Rheum., 40, 834–841, doi:<834::AID-ART8>3.0.CO;2-#.CrossRefPubMedGoogle Scholar
  15. 15.
    Breen, K. A., Seed, P., Parmar, K., Moore, G. W., Stuart-Smith, S. E., and Hunt, B. J. (2012) Complement activation in patients with isolated antiphospholipid antibodies or primary antiphospholipid syndrome, Thromb. Haemost., 107, 423–429, doi: Scholar
  16. 16.
    Colosanti, T., Alessandri, C., Capozzi, A., Sorice, M., Delunardo, F., Longo, A., Pierdominici, M., Conti, F., Truglia, S., Siracusano, A., Valesini, G., Ortona, E., and Margutti, P. (2012) Autoantibodies specific to a peptide of ß2-glycoprotein I cross-react with TLR4, inducing a proinflammatory phenotype in endothelial cells and monocytes, Blood, 120, 3360–3370, doi: Scholar
  17. 17.
    Xia, L., Xie, H., Yu, Y., Zhou, H., Wang, T., and Yan, J. (2016) The effects of NF-κB and c-Jun/AP-1 on the expression of prothrombotic and proinflammatory molecules induced by anti-ß2GPI in mouse, PLoS One, 11, 1–17, doi: Scholar
  18. 18.
    Gropp, K., Weber, N., Reuter, M., Micklisch, S., Kopka, I., Hallstrom, T., and Skerka, C. (2011) ß2-Glycoprotein I, the major target in antiphospholipid syndrome, is a special human complement regulator, Blood, 118, 2774–2783, doi: Scholar
  19. 19.
    Fischetti, F., Durigutto, P., Pellis, V., Debeus, A., Macor, P., Bulla, R., Bossi, F., Ziller, F., Sblattero, D., Meroni, P., and Tedesco, F. (2005) Thrombus formation induced by antibodies to ß2-glycoprotein I is complement dependent and requires a priming factor, Blood, 106, 2340–2346, doi: Scholar
  20. 20.
    Redecha, P., Tilley, R., Tencati, M., Salmon, J. E., Kirchhofer, D., Mackman, N., and Girardi, G. (2007) Tissue factor: a link between C5a and neutrophil activation in antiphospholipid antibody induced fetal injury, Blood, 110, 2423–2431, doi: Scholar
  21. 21.
    Galli, M., Willems, G. M., Rosing, J., Janssen, R. M., Govers-Riemslag, J. W., Comfurius, P., Barbui, T., Zwaal, R. F., and Bevers, E. M. (2005) Anti-prothrombin IgG from patients with anti-phospholipid antibodies inhibits the inactivation of factor Va by activated protein C, Br. J. Haematol., 129, 240–247, doi: Scholar
  22. 22.
    Ieko, M., Yoshida, M., Naito, S., Nakabayashi, T., Kanazawa, K., Mizukami, K., Mukai, M., Atsumi, T., and Koike, T. (2010) Increase in plasma thrombin-activatable fibrinolysis inhibitor may not contribute to thrombotic tendency in antiphospholipid syndrome because of inhibitory potential of antiphospholipid antibodies toward TAFI activation, Int. J. Hematol., 91, 776–783, doi: Scholar
  23. 23.
    Lean, S. Y., Ellery, P., Ivey, L., Thom, J., Oostryck, R., Leahy, M., Baker, R. I., and Adams, M. J. (2006) The effects of tissue factor pathway inhibitor and anti-ß2-glycoprotein-I IgG on thrombin generation, Haematologica, 91, 1360–1366.PubMedGoogle Scholar
  24. 24.
    Yunt, B. J., Wu, X. X., de Laat, B., Arslan, A. A., Stuart-Smith, S., and Rand, J. H. (2011) Resistance to annexin A5 anticoagulant activity in women with histories for obstetric antiphospholipid syndrome, Am. J. Obstet. Gynecol., 205, 485.e17–485.e23, doi: Scholar
  25. 25.
    Du, V. X., Kelchtermans, H., de Groot, P. G., and de Laat, B. (2013) From antibody to clinical phenotype, the black box of the antiphospholipid syndrome: pathogenic mechanisms of the antiphospholipid syndrome, Thromb. Res., 132, 319–326, doi: Scholar
  26. 26.
    Romay-Penabad, Z., Montiel-Manzano, M. G., Shilagard, T., Papalardo, E., Vargas, G., Deora, A. B., Wang, M., Jacovina, A. T., Garcia-Latorre, E., Reyes-Maldonado, E., Hajjar, K. A., and Pierangeli, S. S. (2009) Annexin A2 is involved in antiphospholipid antibody-mediated pathogenic effects in vitro and in vivo, Blood, 114, 3074–3083, doi: Scholar
  27. 27.
    Ulrich, V., Gelber, S. E., Vukelic, M., Sacharidou, A., Herz, J., Urbanus, R. T., de Groot, P. G., Natale, D. R., Harihara, A., Redecha, P., Abrahams, V. M., Shaul, P. W., Salmon, J. E., and Mineo, C. (2016) ApoE receptor 2 mediation of trophoblast dysfunction and pregnancy complications induced by antiphospholipid antibodies in mice, Arthritis Rheumatol., 68, 730–739, doi: Scholar
  28. 28.
    Pennings, M. T., van Lummel, M., Derksen, R. H., Urbanus, R. T., Romijn, R. A., Lenting, P. J., and de Groot, P. G. (2006) Interaction of ß2-glycoprotein I with members of the low density lipoprotein receptor family, J. Thromb. Haemost., 4, 1680–1690, doi: Scholar
  29. 29.
    Satta, N., Kruithof, E. R., Fickentscher, C., Dunoyer-Geindre, S., Boehlen, F., Reber, G., Burger, D., and de Moerloose, P. (2011) Toll-like receptor 2 mediates the activation of human monocytes and endothelial cells by antiphospholipid antibodies, Blood, 117, 5523–5531, doi: Scholar
  30. 30.
    Pierangeli, S. S., Vega-Ostertag, M. E., Raschi, E., Liu, X., Romay-Penabad, Z., De Micheli, V., Galli, M., Moia, M., Tincani, A., Borghi, M. O., Nguyen-Oghalai, T., and Meroni, P. L. (2007) Toll-like receptor and antiphospholipid-mediated thrombosis: in vivo studies, Ann. Rheum. Dis., 66, 1327–1333, doi: Scholar
  31. 31.
    Urbanus, R. T., Pennings, M. T., Derksen, R. H., and de Groot, P. G. (2008) Platelet activation by dimeric ß2-glycoprotein I requires signaling via both glycoprotein Iba and apolipoprotein E receptor 2', J. Thromb. Haemost., 6, 1405–1412, doi: Scholar
  32. 32.
    Tanimura, K., Jin, H., Suenaga, T., Morikami, S., Arase, N., Kishida, K., Hirayasu, K., Kohyama, M., Ebina, Y., Yasuda, S., Horita, T., Takasugi, K., Ohmura, K., Yamamoto, K., Katayama, I., Sasazuki, T., Lanier, L. L., Atsumi, T., Yamada, H., and Arase, H. (2015) ß2-Glycoprotein I/HLA class II complexes are novel autoantigens in antiphospholipid syndrome, Blood, 125, 2835–2844, doi: Scholar
  33. 33.
    Domenico Sebastiani, G., Minisola, G., and Galeazzi, M. (2003) HLA class II alleles and genetic predisposition to the antiphospholipid syndrome, Autoimmun. Rev., 2, 387–394, doi: Scholar
  34. 34.
    Collins, T., Krman, A. J., Wake, C. T., Boss, J. M., Kappes, D. J., Fiers, W., Ault, K. A., Gimbrone, M. A., Jr., Strominger, J. L., and Pober, J. S. (1984) Immune interferon activates multiple class II major histocompatibility complex genes and the associated invariant chain gene in human endothelial cells and dermal fibroblasts, Proc. Natl. Acad. Sci. USA, 81, 4917–4921, doi: Scholar
  35. 35.
    Girardi, G., Berman, J., Redecha, P., Spruce, L., Thurman, J. M., Kraus, D., Hollmann, T. J., Casali, P., Caroll, M. C., Wetsel, R. A., Lambris, J. D., Holers, V. M., and Salmon, J. E. (2003) Complement C5a receptors and neutrophils mediate fetal injury in the antiphospholipid syndrome, J. Clin. Invest., 112, 1644–1654, doi: Scholar
  36. 36.
    Kasahara, H., Matsuura, E., Kaihara, K., Yamamoto, D., Kobayashi, K., Inagaki, J., Ichikawa, K., Tsutsumi, A., Yasuda, S., Atsumi, T., Yasuda, T., and Koike, T. (2005) Antigenic structures recognized by anti-ß2-glycoprotein I auto-antibodies, Int. Immunol., 17, 1533–1542, doi: Scholar
  37. 37.
    Xia, L., Zhou, H., Hu, L., Xie, H., Wang, T., Xu, Y., Liu, J., Zhang, X., and Yan, J. (2013) Both NF-κB and c-Jun/AP-1 involved in anti-ß2GPI/ß2GPI-induced tissue factor expression in monocytes, Thromb. Haemost., 109, 643–651, doi: Scholar
  38. 38.
    Mackman, N. (1995) Regulation of the tissue factor gene, FASEB J., 9, 883–889, doi: Scholar
  39. 39.
    Boles, J., and Mackman, N. (2010) Role of tissue factor in thrombosis in antiphospholipid antibody syndrome, Lupus, 19, 370–378, doi: Scholar
  40. 40.
    Vega-Ostertag, M., Harris, E. N., and Puerangeli, S. S. (2004) Intercellular events in platelet activation induced by antiphospholipid antibodies in the presence of low doses of thrombin, Arthritis Rheum., 50, 2911–2919, doi: Scholar
  41. 41.
    Vega-Ostertag, M., Casper, K., Swerlick, R., Ferrara, D., Harris, E. N., and Pierangeli, S. S. (2005) Involvement of p38 MAPK in the up-regulation of tissue factor on endothelial cells by antiphospholipid antibodies, Arthritis Rheum., 52, 1545–1554, doi: Scholar
  42. 42.
    Zhou, H., Sheng, L., Wang, H., Xie, H., Mu, Y., Wang, T., and Yan, J. (2013) Anti-ß2GPI/ß2GPI stimulates activation of THP-1 cells through TLR4/MD-2/MyD88 and NF-κB signaling pathways, Thromb. Res., 132, 742–749, doi: Scholar
  43. 43.
    Canaud, G., Bienaime, F., Tabarin, F., Bataillon, G., Seilhean, D., Noel, L. H., Dragon-Durey, M. A., Snanoudj, R., Friedlander, G., Halbwachs-Mecarelli, L., Legendre, C., and Terzi, F. (2014) Inhibition of the mTORC pathway in the antiphospholipid syndrome, N. Engl. J. Med., 371, 303–312, doi: Scholar
  44. 44.
    Sciascia, S., Sanna, G., Murru, V., Roccatello, D., Khamashta, M. A., and Bertolaccini, M. L. (2014) Anti-prothrombin (aPT) and anti-phosphatidylserine/prothrombin (aPS/PT) antibodies and the risk of thrombosis in the antiphospholipid syndrome. A systematic review, Thromb. Haemost., 111, 354–364, doi: Scholar
  45. 45.
    Gharavi, A. E., Wilson, W., and Pierangeli, S. (2003) The molecular basis of antiphospholipid syndrome, Lupus, 12, 579–583, doi: Scholar
  46. 46.
    Blank, M., Krause, I., Fridkin, M., Keller, N., Kopolovic, J., Goldberg, I., Tobar, A., and Shoenfeld, Y. (2002) Bacterial induction of autoantibodies to ß2-glycoprotein-I accounts for the infectious etiology of antiphospholipid syndrome, J. Clin. Invest., 109, 797–804, doi: Scholar
  47. 47.
    Miyakis, S., Giannakopoulos, B., and Krilis, S. A. (2004) Beta 2 glycoprotein I – function in health and disease, Thromb. Res., 114, 335–346, doi: Scholar
  48. 48.
    Iverson, G. M., Victoria, E. J., and Marquis, D. M. (1998) Anti-ß2 glycoprotein I (ß2GPI) autoantibodies recognize an epitope on the first domain of ß2GPI, Proc. Natl. Acad. Sci. USA, 95, 15542–15546.CrossRefPubMedGoogle Scholar
  49. 49.
    Andreoli, L., Chighizola, C. B., Nalli, C., Gerosa, M., Borghi, M. O., Pregnolato, F., Grossi, C., Zanola, A., Allegri, F., Norman, G. L., Mahler, M., Meroni, P. L., and Tincani, A. (2015) Clinical characterization of antiphospholipid syndrome by detection of IgG antibodies against ß2-glycoprotein I domain 1 and domain 4/5: ratio of anti-domain1 to anti-domain 4/5 as a useful new biomarker for antiphospholipid syndrome, Arthritis Rheumatol., 67, 2196–2204, doi: Scholar
  50. 50.
    Agostinis, C., Durigutto, P., Sblattero, D., Borghi, M. O., Grossi, C., Guida, F., Bulla, R., Macor, P., Pregnolato, F., Meroni, P. L., and Tedesco, F. (2014) A non-complement-fixing antibody to ß2 glycoprotein I as a novel therapy for antiphospholipid syndrome, Blood, 123, 3478–3487, doi: Scholar
  51. 51.
    Iannou, Y., Romay-Penabad, Z., Pericleous, C., Giles, I., Papalardo, E., Vargas, G., Shilagard, T., Latchman, D. S., Isenberg, D. A., Rahman, A., and Pierangeli, S. (2009) In vivo inhibition of antiphospholipid antibody-induced pathogenicity utilizing the antigenic target peptide domain I of ß2-glycoprotein I: proof of concept, J. Thromb. Haemost., 7, 833–842, doi: Scholar
  52. 52.
    Harris, E. N., Gharavi, A. E., Patel, S. P., and Hughes, G. R. V. (1987) Evaluation of the anti-cardiolipin antibody test: report of an international workshop held 4 April 1986, Clin. Exp. Immunol., 68, 215–222.PubMedPubMedCentralGoogle Scholar
  53. 53.
    Gharavi, A. E., Harris, E. N., Asherson, R. A., and Hughes, G. R. V. (1987) Anticardiolipin antibodies: isotype distribution and phospholipid specificity, Ann. Rheum. Dis., 46, 1–6, doi: Scholar
  54. 54.
    Loizou, S., Mackworth-Young, C. G., Cofiner, C., and Walport, M. J. (1990) Heterogeneity of binding reactivity to different phospholipids of antibodies from patients with systemic lupus erythematosus (SLE) and with syphilis, Clin. Exp. Immunol., 80, 171–176, doi: Scholar
  55. 55.
    Vinuesa, C. G., and Chang, Ph.-P. (2013) Innate B cell helpers reveal novel types of antibody responses, Nat. Immunol., 14, 119–126, doi: Scholar
  56. 56.
    Ansel, K. M., Ngo, V. N., Hyman, P. L., Luther, S. A., Forster, R., Sedgwick, J. D., Browning, J. L., Lipp, M., and Cyster, J. G. (2000) A chemokine-driven positive feedback loop organizes lymphoid follicles, Nature, 406, 309–314, doi: Scholar
  57. 57.
    Gunn, M. D., Tangemann, K., Tam, C., Cyster, J. G., Rosen, S. D., and Williams, L. T. (1998) A chemokine expressed in lymphoid high endothelial venules promotes the adhesion and chemotaxis of naive T lymphocytes, Proc. Natl. Acad. Sci. USA, 95, 258–263, doi: Scholar
  58. 58.
    Batista, F. D., and Harwood, N. E. (2009) The who, how and where of antigen presentation to B cells, Nat. Rev. Immunol., 9, 155–227, doi: Scholar
  59. 59.
    Ebert, L. M., Horn, M. P., Lang, A. B., and Moser, B. (2004) B cells alter the phenotype and function of follicular-homing CXCR5+ T cells, Eur. J. Immunol., 34, 3562–3571, doi: Scholar
  60. 60.
    Celli, S., Lemaitre, F., and Bousso, P. (2007) Real-time manipulation of T cell-dendritic cell interactions in vivo reveals the importance of prolonged contacts for CD4+ T cell activation, Immunity, 27, 625–634, doi: Scholar
  61. 61.
    Fazilleau, N., McHeyzer-Williams, L. J., Rosen, H., and McHeyzer-Williams, M. G. (2009) The function of follicular helper T cells is regulated by the strength of T cell antigen receptor binding, Nat. Immunol., 10, 375–384, doi: Scholar
  62. 62.
    Walker, L. S., Gulbranson-Judge, A., Flynn, S., Brocker, T., Raykundalia, C., Goodall, M., Forster, R., Lipp, M., and Lane, P. (1999) Compromised OX40 function in CD28-deficient mice is linked with failure to develop CXC chemokine receptor 5-positive CD4 cells and germinal centers, J. Exp. Med., 190, 1115–1122, doi: Scholar
  63. 63.
    Okada, T., Miller, M. J., Parker, I., Krummel, M. F., Neighbors, M., Hartley, S. B., O’Garra, A., Cahalan, M. D., and Cyster, J. G. (2005) Antigen-engaged B cells undergo chemotaxis toward the T zone and form motile conjugates with helper T cells, PLoS Biol., 3, e150, doi: Scholar
  64. 64.
    McHeyzer-Williams, L. J., Pelletier, N., Mark, L., Fazilleau, N., and McHeyzer-Williams, M. G. (2009) Follicular helper T cells as cognate regulators of cell immunity, Curr. Opin. Immunol., 21, 266–273, doi: Scholar
  65. 65.
    Johnston, R. J., Poholek, A. C., DiToro, D., Yusuf, I., Eto, D., Barnett, B., Dent, A. L., Craft, J., and Crotty, S. (2009) Bcl6 and Blimp-1 are reciprocal and antagonistic regulators of T follicular helper cell differentiation, Science, 325, 1006–1010, doi: Scholar
  66. 66.
    Suan, D., Nguyen, A., Moran, I., Bourne, K., Hermes, J. R., Arshi, M., Hampton, H. R., Tomura, M., Miwa, Y., Kelleher, A. D., Kaplan, W., Deenick, E. K., Tangye, S. G., Brink, R., Chtanova, T., and Phan, T. G. (2015) T follicular helper cells have distinct modes of migration and molecular signatures in naive and memory immune responses, Immunity, 42, 704–718, doi: Scholar
  67. 67.
    Klein, U., and Dalla-Favera, R. (2008) Germinal centers: role in B-cell physiology and malignancy, Nat. Rev. Immunol., 8, 22–33, doi: Scholar
  68. 68.
    Victora, G. D., and Nussenzweig, M. C. (2012) Germinal centers, Annu. Rev. Immunol., 30, 429–457, doi: Scholar
  69. 69.
    Gitlin, A. D., Shulman, Z., and Nussenzweig, M. C. (2014) Clonal selection in the germinal centre by regulated proliferation and hypermutation, Nature, 509, 637–640, doi: Scholar
  70. 70.
    Crotty, S. (2011) Follicular helper CD4 T cells (TFH), Annu. Rev. Immunol., 29, 621–663, doi: Scholar
  71. 71.
    Dufaud, C. R., McHeyzer-Williams, L. J., and McHeyzer-Williams, M. G. (2017) Deconstructing the germinal center, one cell at a time, Curr. Opin. Immunol., 45, 112–118, doi: Scholar
  72. 72.
    Allen, C. D. C., Okada, T., Tang, H. L., and Cyster, J. G. (2007) Imaging of germinal center selection events during affinity maturation, Science, 315, 528–531, doi: Scholar
  73. 73.
    Shapiro-Shelef, M., and Calame, K. (2005) Regulation of plasma cell development, Nat. Rev. Immunol., 5, 230–242, doi: Scholar
  74. 74.
    Mendez, L. M., Polo, J. M., Yu, J. J., Krupski, M., Ding, B. B., Melnick, A., and Ye, B. H. (2008) CtBP is an essential corepressor for BCL6 autoregulation, Mol. Cell. Biol., 28, 2175–2186, doi: Scholar
  75. 75.
    Shapiro-Shelef, M., Lin, K. I., McHeyzer-Williams, L. J., Liao, J., McHeyzer-Williams, M. G., and Calame, K. (2003) Blimp-1 is required for the formation of immunoglobulin secreting plasma cells and pre-plasma memory B cells, Immunity, 19, 607–620, doi: Scholar
  76. 76.
    Reinhardt, R., Liang, H., and Locksley, R. (2009) Cytokine-secreting follicular T cells shape the antibody repertoire, Nat. Immunol., 10, 385–393, doi: Scholar
  77. 77.
    Scaerli, P., Willimann, K., Lang, A. B., Lipp, M., Loetscher, P., and Moser, B. (2000) CXC chemokine receptor 5 expression defines follicular homing T cells with B cell helper function, J. Exp. Med., 192, 553–562, doi: Scholar
  78. 78.
    Good-Jacobson, K. L., Szumilas, C. G., Chen, L., Sharpe, A. H., Tomayko, M. M., and Shlomchik, M. J. (2010) PD1 regulates germinal center B cell survival and the formation and affinity of long-lived plasma cells, Nat. Immunol., 11, 535–542, doi: Scholar
  79. 79.
    Linterman, M. A., Beaton, L., Yu, D., Ramiscal, R. R., Srivastava, M., Hogan, J. J., Verma, N. K., Smyth, M. J., Rigby, R. J., and Vinuesa, C. G. (2010) IL-21 acts directly on B cells to regulate Bcl-6 expression and germinal center responses, J. Exp. Med., 207, 353–363, doi: Scholar
  80. 80.
    Bendelac, A., Savage, P. B., and Teyton, L. (2007) The biology of NKT cells, Annu. Rev. Immunol., 25, 297–336, doi: Scholar
  81. 81.
    Morita, M., Natori, T., Sakai, T., Sawa, E., Yamaji, K., Koezuka, Y., Kobayashi, E., and Fukushima, H. (1995) Structure-activity relationship of α-galactosylceramides against B16-bearing mice, J. Med. Chem., 38, 2176–2187, doi: Scholar
  82. 82.
    Kawano, T., Cui, J., Koezuka, Y., Toura, I., Kaneko, Y., Motoki, K., Ueno, H., Nakagawa, R., Sato, H., Kondo, E., Koseki, H., and Taniguchi, M. (1997) CD1d-restricted and TCR-mediated activation of Vα14 NKT cells by glycosylceramides, Science, 278, 1626–1629, doi: Scholar
  83. 83.
    Barral, D. C., and Brenner, M. B. (2007) CD1 antigen presentation: how it works, Nat. Rev. Immunol., 7, 929–941, doi: Scholar
  84. 84.
    Godfrey, D. I., Rossjohn, J., and McCluskey, J. (2008) The fidelity, occasional promiscuity, and versatility of T cell receptor recognition, Immunity, 28, 304–314, doi: Scholar
  85. 85.
    Brossay, L., Chioda, M., Burdin, N., Koezuka, Y., Casorati, G., Dellabona, P., and Kronenberg, M. (1998) CD1d-mediated recognition of an α-galactosylceramide by natural killer T cells highly conserved through mammalian evolution, J. Exp. Med., 188, 1521–1528, doi: Scholar
  86. 86.
    De Libero, G., and Mori, L. (2006) Mechanisms of lipid-antigen generation and presentation to T cells, Trends. Immunol., 27, 485–492, doi: Scholar
  87. 87.
    Macho-Fernandez, E., and Brigl, M. (2015) The extended family of CD1d-restricted NKT cells: sifting through a mixed bag of TCRs, antigens, and functions, Front. Immunol., 6, 1–19, doi: Scholar
  88. 88.
    Kronenberg, M. (2005) Toward an understanding of NKT cell biology: progress and paradoxes, Annu. Rev. Immunol., 23, 877–900, doi: Scholar
  89. 89.
    Fais, F., Morabito, F., Stelitano, C., Callea, V., Zanardi, S., Scudeletti, M., Varese, P., Ciccone, E., and Grossi, C. E. (2004) CD1d is expressed on B-chronic lymphocytic leukemia cells and mediates α-galactosylceramide presentation to natural killer T lymphocytes, Int. J. Cancer, 109, 402–411, doi: Scholar
  90. 90.
    Boyson, J. E., Rybalov, B., Koopman, L. A., Exley, M., Balk, S. P., Racke, F. K., Schatz, F., Masch, R., Wilson, S. B., and Strominger, J. L. (2002) CD1d and invariant NKT cells at the human maternal–fetal interface, Proc. Natl. Acad. Sci. USA, 99, 13741–13746, doi: Scholar
  91. 91.
    Barral, P., Exkl-Dorna, J., Harwood, N. E., De Santo, C., Salio, M., Illarionov, P., Besra, G. S., Cerundolo, V., and Batista, F. D. (2008) B cell receptor-mediated uptake of CD1d-restricted antigen augments antibody responses by recruiting invariant NKT cell help in vivo, Proc. Natl. Acad. Sci. USA, 105, 8345–8350, doi: Scholar
  92. 92.
    Leadbetter, E. A., Brigl, M., Illarionov, P., Cohen, N., Luteran, M. C., Pillai, S., Besra, G. S., and Brenner, M. B. (2008) NKT cells provide lipid antigen-specific cognate help for B cells, Proc. Natl. Acad. Sci. USA, 105, 8339–8344, doi: Scholar
  93. 93.
    Dellabona, P., Abrignani, S., and Casorati, G. (2014) iNKT cells help to B cells: a cooperative job between innate and adaptive immune responses, Eur. J. Immunol., 44, 2230–2237, doi: Scholar
  94. 94.
    Vomhof-DeKrey, E. E., Yates, J., and Leadbetter, E. A. (2014) Invariant NKT cells provide innate and adaptive help for B cells, Curr. Opin. Immunol., 28, 12–17, doi: Scholar
  95. 95.
    Chang, P. P., Barral, P., Fitch, J., Pratama, A., Ma, C. S., Kallies, A., Hogan, J. J., Cerundolo, V., Tangye, S. G., Bittman, R., Nutt, S. L., Brink, R., Godfrey, D. I., Batista, F. D., and Vinuesa, C. G. (2012) Identification of Bcl-6-dependent follicular helper NKT cells that provide cognate help for B cell responses, Nat. Immunol., 13, 35–43, doi: Scholar
  96. 96.
    King, I. L., Fortier, A., Tighe, M., Dibble, J., Watts, G. F., Veerapen, N., Haberman, A. M., Besra, G. S., Mohrs, M., Brenner, M. B., and Leadbetter, E. A. (2012) Invariant natural killer T cells direct B cell responses to cognate lipid antigen in an IL-21-dependent manner, Nat. Immunol., 13, 44–50, doi: Scholar
  97. 97.
    Mattner, J., Savage, P. B., Leung, P., Oertelt, S. S., Wang, V., Trivedi, O., Scanlon, S. T., Pendem, K., Teyton, L., Hart, J., Ridgway, W. M., Wicker, L. S., Gershwin, M. E., and Bendelac, A. (2008) Liver autoimmunity triggered by microbial activation of natural killer T cells, Cell Host Microbe, 3, 304–315, doi: Scholar
  98. 98.
    Fujii, S., Shimizu, K., Smith, C., Bonifaz, L., and Steinman, R. M. (2003) Activation of natural killer T cells by α-galactosylceramide rapidly induces the full maturation of dendritic cells in vivo and thereby acts as an adjuvant for combined CD4 and CD8 T cell immunity to a co-administered protein, J. Exp. Med., 198, 267–279, doi: Scholar
  99. 99.
    Nair, S., Boddupalli, C. S., Verma, R., Liu, J., Yang, R., Pastores, G. M., Mistry, P. K., and Dhodapkar, M. V. (2015) Type II NKT-TFH cells against Gaucher lipids regulate B-cell immunity and inflammation, Blood, 125, 1256–1271, doi: Scholar
  100. 100.
    Mistry, P. K., Taddei, T., von Dahl, S., and Rosenblom, B. E. (2013) Gaucher disease and malignancy: a model for cancer pathogenesis in an inborn error of metabolism, Crit. Rev. Oncol., 18, 235–246, doi: Scholar
  101. 101.
    Zeng, S. G., Ghnewa, Y. G., O’Reilly, V. P., Lyons, V. G., Atzberger, A., Hogan, A. E., Exley, M. A., and Doherty, D. G. (2013) Human invariant NKT cell subsets differentiation, antibody production, and T cell stimulation by B cells in vitro, J. Immunol., 191, 1666–1676, doi: Scholar
  102. 102.
    Exley, M. A., Tahir, S. M., Cheng, O., Shaulov, A., Joyce, R., Avigan, D., Sackstein, R., and Balk, S. P. (2001) A major fraction of human bone marrow lymphocytes are Th2-like CD1d-reactive T cells that can suppress mixed lymphocyte responses, J. Immunol., 167, 5531–5534, doi: Scholar
  103. 103.
    Gumperz, J. E., Roy, C., Makowska, A., Lum, D., Sugita, M., Podrebarac, T., Koezukan, Y., Porcelli, S. A., Cardell, S., Brenner, M. B., and Behar, S. M. (2000) Murine CD1d-restricted T cell recognition of cellular lipids, Immunity, 12, 211–221, doi: Scholar
  104. 104.
    Zhao, J., Weng, X., Bagchi, S., and Wang, C. R. (2014) Polyclonal type II natural killer T cells require PLZF and SAP for their development and contribute to CpG-mediated antitumor response, Proc. Natl. Acad. Sci. USA, 111, 2674–2679, doi: Scholar
  105. 105.
    Weng, X., Liao, C. M., Bagchi, S., Cardell, S. L., Stein, P. L., and Weng, C. R. (2014) The adaptor protein SAP regulates type II NKT cell development, cytokine production and cytotoxicity against lymphoma, Eur. J. Immunol., 44, 3634–3657, doi: Scholar
  106. 106.
    Sallo, M., Silk, J. D., Jones, E. Y., and Cerundolo, V. (2014) Biology of CD1- and MR1-restricted T cells, Annu. Rev. Immunol., 32, 323–366, doi: Scholar
  107. 107.
    Liu, K., Idoyaga, J., Charalambous, A., Fujii, S., Bonito, A., Mordoh, J., Wainstok, R., Bai, X. F., Liu, Y., and Steinman, R. M. (2005) Innate NKT lymphocytes confer superior adaptive immunity via tumor-capturing dendritic cells, J. Exp. Med., 202, 1507–1516, doi: Scholar
  108. 108.
    Allan, L. L., Hoefl, K., Zheng, D. J., Chung, B. K., Kozak, F. K., Tan, R., and van den Elzen, P. (2009) Apolipoprotein-mediated lipid antigen presentation in B cells provides a pathway for innate help by NKT cells, Blood, 114, 2411–2416, doi: Scholar
  109. 109.
    Tonti, E., Galli, G., Malzone, C., Abrignani, S., Casorati, G., and Dellabona, P. (2009) NKT-cell help to B lymphocytes can occur independently of cognate interaction, Blood, 113, 370–376, doi: Scholar
  110. 110.
    King, I. L., Amiel, E., Tighe, M., Mohrs, K., Veerapen, N., Besra, G., Mohrs, M., and Leadbetter, E. A. (2013) The mechanism of splenic invariant NKT cell activation dictates localization in vivo, J. Immunol., 191, 572–582, doi: Scholar
  111. 111.
    Shah, H. B., Joshi, S. K., Rampuria, P., Devera, T. S., Lang, G. A., Stohl, W., and Lang, M. L. (2013) BAFF- and APRIL-dependent maintenance of antibody titers after immunization with T-dependent antigen and CD1d- binding ligand, J. Immunol., 191, 1154–1163, doi: Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Institute of Ecology and Genetics of Microorganisms, Perm Federal Research CenterUral Branch of the Russian Academy of SciencesPermRussia

Personalised recommendations