Advertisement

Biochemistry (Moscow)

, Volume 84, Issue 8, pp 963–977 | Cite as

Analysis of Protein Synthesis in Cucumber Leaves after Inoculation with Corynespora cassiicola: A Proteomic Approach

  • G. Yu
  • Y. Yu
  • H. FanEmail author
  • D. Zhang
  • N. Cui
  • X. Wang
  • S. Jia
  • Y. Yang
  • J. Zhao
Article
  • 7 Downloads

Abstract

Cucumber target leaf spot (TLS) disease caused by Corynespora cassiicola has become one of the most important fungal foliar diseases of cultivated cucumbers. However, the defense mechanisms of cucumber plants (Cucumis sativus) against C. cassiicola are still poorly understood. Here, proteins from resistant cucumber plants were analyzed using iTRAQ (isobaric tags for relative and absolute quantification) method. A total of 286 differentially expressed proteins were identified (p < 0.05, ratio > 1.2 or < 0.83) 6 and 24 h after pathogen inoculation in the resistant cultivar Jinyou 38 (the data are available via ProteomeXchange; identifier, PXD012903). Some of the early responses to C. cassiicola infection were revealed, and four factors related to the resistance of cucumber plants to TLS were discovered. First, the proteomic approach revealed modulation of signaling pathways in resistant cucumber plants in response to C. cassiicola infection. Second, the plant immune system recognizes the pathogen and initiates expression of immune response proteins, including those related to plant defense, stress response, signal transduction, cell metabolism, and redox regulation. Third, C. cassiicola activates common stress response pathways; in particular, mildew resistance locus O (MLO) proteins were found to play a crucial role in the TLS prevention. Fourth, rapid activation of the carbohydrate and secondary metabolic pathways, modification and reinforcement of cell walls, and adjustment of the apoplastic environment to the highly stressful conditions were crucial in the cucumber resistance to TLS. Overall, our data contribute to the understanding of interactions between plants and their pathogens and provide new insight into molecular processes involved in the resistance of cucumber plants to disease.

Keywords

cucumber Corynespora cassiicola iTRAQ defense-related proteins RT-qPCR histochemical staining 

Abbreviations

ACC

1-aminocyclopropane-1-carboxylate

ACO

ACC oxidase

APX

ascorbic acid peroxidase

CAD

cinnamyl alcohol dehydrogenase

CCR1

cinnamoyl-CoA reductase 1

CDPK

calcium-dependent protein kinase

CGMMV

cucumber green mottle mosaic virus

DIRP

dirigent protein

hpi

hours post-inoculation

iTRAQ

isobaric tags for relative and absolute quantification (method)

KAT2

3-ketoacyl-CoA thiolase, peroxisomal

MLO protein

mildew resistance locus O family protein

MLP

MLP-like protein

nsLTP

non-specific lipid transfer protein

OPDA

12-oxo-phytodienoic acid

OPR1

12-oxophytodienoate reductase 1

PLD

phospholipase D

PPR protein

pentatricopeptide repeat-containing protein

PR protein

pathogenesis-related protein

RBOH protein

respiratory burst oxidase homolog protein

ROS

reactive oxygen species

S/TPK

serine/threonine protein kinase

SAR

systemic acquired resistance

SOD

superoxide dismutase

SUBP

subtilisin-like protease

TLS

(cucumber) target leaf spot

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Funding. This research was supported by the National Key Research and Development Program of China (project 2016YFD0201004).

Conflict of interest. The authors declare no conflict of interest in financial or any other area.

Compliance with ethical standards. This article does not contain any studies involving animals or human participants performed by any of the authors.

Supplementary material

10541_2019_812_MOESM1_ESM.pdf (978 kb)
Table S2. List of differentially expressed proteins at different time points

References

  1. 1.
    Gao, W., Wang, Y., and Zhang, C. (2016) Resistance identification of different cucumber varieties to Corynespora leaf spot, North. Horticult., 11, 110–112.Google Scholar
  2. 2.
    Zhang, M., Jin, K., Liu, L., Shao, Z., Liu, H., Hu, S., Zhu, N., Dufresne, C. P., Chen, S., and Wang, Q. (2016) Critical role of COI1-dependent jasmonate pathway in AAL toxin induced PCD in tomato revealed by comparative proteomics, Sci. Rep., 6, 28451.CrossRefGoogle Scholar
  3. 3.
    Abul-Hayja, Z., Williams, P. H., and Peterson, C. E. (1978) Inheritance of resistance to anthracnose and target leaf spot in cucumbers, Plant Dis. Rep., 62, 43–45.Google Scholar
  4. 4.
    Yang, L., Koo, D. H., Li, Y., Zhang, X., Luan, F., Havey, M. J., Jiang, J., and Weng, Y. (2012) Chromosome rearrangements during domestication of cucumber as revealed by high-density genetic mapping and draft genome assembly, Plant J., 71, 895–906.CrossRefGoogle Scholar
  5. 5.
    Wen, C., Mao, A., Dong, C., Liu, H., Yu, S., Guo, Y. D., Weng, Y., and Xu, Y. (2015) Fine genetic mapping of target leaf spot resistance gene cca-3 in cucumber, Cucumis sativus L., Theor. Appl. Genet., 128, 2495–2506.CrossRefGoogle Scholar
  6. 6.
    Liu, H. W., Liang, C. Q., Liu, P. F., Luo, L. X., and Li, J. Q. (2015) Quantitative proteomics identifies 38 proteins that are differentially expressed in cucumber in response to cucumber green mottle mosaic virus infection, Virol. J., 12, 216.CrossRefGoogle Scholar
  7. 7.
    Meng, X., Song, T., Fan, H., Yu, Y., Cui, N., Zhao, J., and Meng, K. (2016) A comparative cell wall proteomic analysis of cucumber leaves under Sphaerotheca fuliginea stress, Acta Physiol. Plant., 38, 260.CrossRefGoogle Scholar
  8. 8.
    Wang, Y., Liu, Y., He, P., Lamikanra, O., and Lu, J. (1998) Resistance of Chinese Vitis species to Elsinoл ampelina (de Bary) Shear, HortScience, 33, 123–126.CrossRefGoogle Scholar
  9. 9.
    Fan, H. Y., Chen, J., Zhang, C. Y., Guo, H., and Lin, Y. (2008) A two-dimensional electrophoresis protocol suitable for proteomic analysis of cucumber leaves, J. Shenyang Agricult. Univ., 39, 365–367.Google Scholar
  10. 10.
    Castillejo, M. A., Fernandezaparicio, M., and Rubiales, D. (2011) Proteomic analysis by two-dimensional differential in gel electrophoresis (2D DIGE) of the early response of Pisum sativum to Orobanche crenata, J. Exp. Bot., 63, 107–109.CrossRefGoogle Scholar
  11. 11.
    Sacute, W., Niewski, J. R., Zougman, A., Nagaraj, N., and Mann, M. (2009) Universal sample preparation method for proteome analysis, Nat. Methods, 6, 359–362.CrossRefGoogle Scholar
  12. 12.
    Ashburner, M., Ball, C. A., Blake, J. A., Botstein, D., Butler, H., Cherry, J. M., Davis, A. P., Dolinski, K., Dwight, S. S., and Eppig, J. T. (2000) Gene ontology: tool for the unification of biology, Nat. Genet., 25, 25–29.CrossRefGoogle Scholar
  13. 13.
    Gotz, S., Garciagomez, J. M., Terol, J., Williams, T. D., Nagaraj, S. H., Nueda, M. J., Robles, M., Talon, M., Dopazo, J., and Conesa, A. (2008) High-throughput functional annotation and data mining with the Blast2GO suite, Nucleic Acids Res., 36, 3420–3435.CrossRefGoogle Scholar
  14. 14.
    Kanehisa, M., Goto, S., Sato, Y., Furumichi, M., and Tanabe, M. (2012) KEGG for integration and interpretation of large-scale molecular data sets, Nucleic Acids Res., 40, D109–D114.CrossRefGoogle Scholar
  15. 15.
    Qi, X. H., Xu, X. W., Lin, X. J., Zhang, W. J., and Chen, X. H. (2010) Identification of differentially expressed genes in cucumber (Cucumis sativus L.) root under waterlogging stress by digital gene expression profile, Genomics, 95, 160–168.CrossRefGoogle Scholar
  16. 16.
    Wang, X., Zhang, D., Cui, N., Yang, Y., Yu, G., and Fan, H. (2018) Transcriptome and miRNA analyses of the response to Corynespora cassiicola in cucumber, Sci. Rep., 8, 7798.CrossRefGoogle Scholar
  17. 17.
    Xue, M., and Yi, H. (2017) Enhanced Arabidopsis disease resistance against Botrytis cinerea induced by sulfur dioxide, Ecotoxicol. Environ. Saf., 147, 523–529.CrossRefGoogle Scholar
  18. 18.
    Osmark, P., Boyle, B., and Brisson, N. (1998) Sequential and structural homology between intracellular pathogenesis-related proteins and a group of latex proteins, Plant Mol. Biol., 38, 1243–1246.CrossRefGoogle Scholar
  19. 19.
    Spagnolo, A., Magninrobert, M., Alayi, T. D., Cilindre, C., Schaefferreiss, C., Van, D. A., Clement, C., Larignon, P., Ramirezsuero, M., and Chong, J. (2014) Differential responses of three grapevine cultivars to Botryosphaeria dieback, Phytopathology, 104, 1021–1035.CrossRefGoogle Scholar
  20. 20.
    Pearce, G., Yamaguchi, Y., Barona, G., and Ryan, C. A. (2010) A subtilisin-like protein from soybean contains an embedded, cryptic signal that activates defense-related genes, Proc. Natl. Acad. Sci. USA, 107, 14921–14925.CrossRefGoogle Scholar
  21. 21.
    Monteiro, F., Sebastiana, M., Pais, M. S., and Figueiredo, A. (2012) Reference gene selection and validation for the early responses to downy mildew infection in susceptible and resistant Vitis vinifera cultivars, Plos One, 8, 611–620.Google Scholar
  22. 22.
    Gregory, P., Yube, Y., Guido, B., and Ryan, C. A. (2010) A subtilisin-like protein from soybean contains an embedded, cryptic signal that activates defense-related genes, Proc. Natl. Acad. Sci. USA, 107, 14921–14925.CrossRefGoogle Scholar
  23. 23.
    Fang, L., Zhang, X., Lu, C., Zeng, X., Li, Y., Fu, D., and Gang, W. (2015) Non-specific lipid transfer proteins in plants: presenting new advances and an integrated functional analysis, J. Exp. Bot., 66, 5663–5681.CrossRefGoogle Scholar
  24. 24.
    Buhot, N., Douliez, J. P., Jacquemard, A., and Marion, D. (2001) A lipid transfer protein binds to a receptor involved in the control of plant defense responses, FEBS Lett., 509, 27–30.CrossRefGoogle Scholar
  25. 25.
    Suzuki, H., Xia, Y., Cameron, R., Shadle, G., Blount, J., Lamb, C., and Dixon, R. A. (2004) Signals for local and systemic responses of plants to pathogen attack, J. Exp. Bot., 55, 169–179.CrossRefGoogle Scholar
  26. 26.
    Sarowar, S., Kim, Y. J., Kim, K. D., Hwang, B. K., Ok, S. H., and Shin, J. S. (2009) Overexpression of lipid transfer protein (LTP) genes enhances resistance to plant pathogens and LTP functions in long-distance systemic signaling in tobacco, Plant Cell Rep., 28, 419–427.CrossRefGoogle Scholar
  27. 27.
    Kim, M. C., Lee, S. H., Kim, J. K., Chun, H. J., Choi, M. S., Chung, W. S., Moon, B. C., Kang, C. H., Park, C. Y., and Yoo, J. H. (2002) Mlo, a modulator of plant defense and cell death, is a novel calmodulin-binding protein. Isolation and characterization of a rice Mlo homologue, J. Biol. Chem., 277, 19304–19314.CrossRefGoogle Scholar
  28. 28.
    Devoto, A., Piffanelli, P., Nilsson, I., Wallin, E., Panstruga, R., Von, H. G., and Schulzelefert, P. (1999) Topology, subcellular localization, and sequence diversity of the Mlo family in plants, J. Biol. Chem., 274, 34993–35004.CrossRefGoogle Scholar
  29. 29.
    Devoto, A., and Turner, J. G. (2003) Regulation of jasmonate-mediated plant responses in Arabidopsis, Ann. Bot., 92, 329–337.CrossRefGoogle Scholar
  30. 30.
    Consonni, C., Humphry, M. E., Hartmann, H. A., Livaja, M., Durner, J., Westphal, L., Vogel, J., Lipka, V., Kemmerling, B., and Schulzelefert, P. (2006) Conserved requirement for a plant host cell protein in powdery mildew pathogenesis, Nat. Genet., 38, 716–720.CrossRefGoogle Scholar
  31. 31.
    Lorek, J., Griebel, T., Jones, A. M., Kuhn, H., and Panstruga, R. (2013) The role of Arabidopsis heterotrimeric G-protein subunits in MLO2 function and MAMP-triggered immunity, Mol. Plant Microbe Interact., 26, 991–1003.CrossRefGoogle Scholar
  32. 32.
    Berken, A. (2006) ROPs in the spotlight of plant signal transduction, Cell. Mol. Life Sci., 63, 2446–2459.CrossRefGoogle Scholar
  33. 33.
    Assmann, S. M. (2004) Plant G proteins, phytohormones, and plasticity: three questions and a speculation, Sci. Signal., 206, 20.Google Scholar
  34. 34.
    Lalonde, S., Sero, A., Pratelli, R., Pilot, G., Chen, J., Sardi, M. I., Parsa, S. A., Kim, D. Y., Acharya, B. R., and Stein, E. V. (2010) A membrane protein/signaling protein interaction network for Arabidopsis version AMPv2, Front. Physiol., 1, 24.CrossRefGoogle Scholar
  35. 35.
    Burkart, G. M., Baskin, T. I., and Bezanilla, M. (2015) A family of ROP proteins that suppresses actin dynamics, and is essential for polarized growth and cell adhesion, J. Cell Sci., 128, 2553–2564.CrossRefGoogle Scholar
  36. 36.
    Thomas, C., and Berken, A. (2010) Structure and function of ROPs and their GEFs, in Integrated G Proteins Signaling in Plants (Yalovsky, S., Baluska, F., and Jones, A., eds.), Springer, Berlin-Heidelberg, pp. 49–69.CrossRefGoogle Scholar
  37. 37.
    Suharsono, U., Fujisawa, Y., Kawasaki, T., Iwasaki, Y., Satoh, H., and Shimamoto, K. (2002) The heterotrimeric G protein alpha subunit acts upstream of the small GTPase Rac in disease resistance of rice, Proc. Natl. Acad. Sci. USA, 99, 13307–13312.CrossRefGoogle Scholar
  38. 38.
    Verma, V., Ravindran, P., and Kumar, P. P. (2016) Plant hormone-mediated regulation of stress responses, BMC Plant Biol., 16, 86.CrossRefGoogle Scholar
  39. 39.
    Lorenzo, O., Piqueras, R., Sanchezserrano, J. J., and Solano, R. (2003) Ethylene response factor 1 integrates signals from ethylene and jasmonate pathways in plant defense, Plant Cell, 15, 165–178.CrossRefGoogle Scholar
  40. 40.
    Chivasa, S., Hamilton, J. M., Pringle, R. S., Ndimba, B. K., Simon, W. J., Lindsey, K., and Slabas, A. R. (2006) Proteomic analysis of differentially expressed proteins in fungal elicitor-treated Arabidopsis cell cultures, J. Exp. Bot., 57, 1553–1562.CrossRefGoogle Scholar
  41. 41.
    Dave, A., and Graham, I. A. (2012) Oxylipin signaling: a distinct role for the jasmonic acid precursor cis-(+)-12-oxo-phytodienoic acid (cis-OPDA), Front. Plant Sci., 3, 42.CrossRefGoogle Scholar
  42. 42.
    Foyer, C. H., and Noctor, G. (2005) Redox homeostasis and antioxidant signaling: a metabolic interface between stress perception and physiological responses, Plant Cell, 17, 1866–1875.CrossRefGoogle Scholar
  43. 43.
    Orozco-Cardenas, M. L., and Ryan, C. A. (2001) Hydrogen peroxide acts as a second messenger for the induction of defense genes in tomato plants in response to wounding, systemin, and methyl jasmonate, Plant Cell, 13, 179–191.CrossRefGoogle Scholar
  44. 44.
    Mike, P., Nighat, S., Paszkiewicz, K., Florance, H., and Smirnoff, N. (2011) The influence of ascorbate on anthocyanin accumulation during high light acclimation in Arabidopsis thaliana: further evidence for redox control of anthocyanin synthesis, Plant Cell Environ., 35, 388–404.Google Scholar
  45. 45.
    Kawasaki, T., Koita, H., Nakatsubo, T., Hasegawa, K., Wakabayashi, K., Takahashi, H., Umemura, K., Umezawa, T., and Shimamoto, K. (2006) Cinnamoyl-CoA reductase, a key enzyme in lignin biosynthesis, is an effector of small GTPase Rac in defense signaling in rice, Proc. Natl. Acad. Sci. USA, 103, 230–235.CrossRefGoogle Scholar
  46. 46.
    Pei, Z., Murata, Y., Benning, G., Thomine, S., Klusener, B., Allen, G. J., Grill, E., and Schroeder, J. I. (2000) Calcium channels activated by hydrogen peroxide mediate abscisic acid signaling in guard cells, Nature, 406, 731–734.CrossRefGoogle Scholar
  47. 47.
    Torres, M. A., Jones, J. D., and Dangl, J. L. (2005) Pathogen-induced, NADPH oxidase-derived reactive oxygen intermediates suppress spread of cell death in Arabidopsis thaliana, Nat. Genet., 37, 1130–1134.CrossRefGoogle Scholar
  48. 48.
    Hardie, D. G. (1999) Plant protein serine/threonine kinases: KINASES: classification and functions, Plant Biol., 50, 97–131.Google Scholar
  49. 49.
    Lee, K. J., and Kim, K. (2015) The rice serine/threonine protein kinase OsPBL1 (Oryza sativa Arabidopsis PBS1-LIKE 1) is potentially involved in resistance to rice stripe disease, Plant Growth Regul., 77, 1–9.CrossRefGoogle Scholar
  50. 50.
    Mayer, M. P., and Bukau, B. (2005) Hsp70 chaperones: cellular functions and molecular mechanism, Cell. Mol. Life Sci., 62, 670–684.CrossRefGoogle Scholar
  51. 51.
    Roelofs, J., Park, S., Haas, W., Tian, G., Mcallister, F. E., Huo, Y., Lee, B. H., Zhang, F., Shi, Y., and Gygi, S. P. (2009) Chaperone-mediated pathway of proteasome regulatory particle assembly, Nature, 459, 861–865.CrossRefGoogle Scholar
  52. 52.
    Cartea, M. E., Francisco, M., Soengas, P., and Velasco, P. (2011) Phenolic compounds in Brassica vegetables, Molecules, 16, 251–280.CrossRefGoogle Scholar
  53. 53.
    Lauvergeat, V., Lacomme, C., Lacombe, E., Lasserre, E., Roby, D., and Grima-Pettenati, J. (2001) Two cinnamoyl-CoA reductase (CCR) genes from Arabidopsis thaliana are differentially expressed during development and in response to infection with pathogenic bacteria, Phytochemistry, 57, 1187–1195.CrossRefGoogle Scholar
  54. 54.
    Boubakri, H., Wahab, M. A., Chong, J., Gertz, C., Gandoura, S., Mliki, A., Bertsch, C., and Soustre-Gacougnolle, I. (2013) Methionine elicits H2O2 generation and defense gene expression in grapevine and reduces Plasmopara viticola infection, J. Plant Physiol., 170, 1561–1568.CrossRefGoogle Scholar
  55. 55.
    Xu, L., Zhu, L., Tu, L., Liu, L. L., Yuan, D. J., Jin, L., Long, L., and Zhang, X. L. (2011) Lignin metabolism has a central role in the resistance of cotton to the wilt fungus Verticillium dahliae as revealed by RNA-Seq-dependent transcriptional analysis and histochemistry, J. Exp. Bot., 62, 5607–5621.CrossRefGoogle Scholar
  56. 56.
    Umezawa, T., Davin, L. B., and Lewis, N. G. (1991) Formation of lignans, (−)-secoisolariciresinol and (−)-matai-resinol with Forsythia intermedia cell-free extracts, J. Biol. Chem., 266, 10210–10217.Google Scholar
  57. 57.
    Katayama, T., Davin, L. B., and Lewis, N. G. (1992) An extraordinary accumulation of (−)-pinoresinol in cell-free extracts of Forsythia intermedia: evidence for enantiospecific reduction of (+)-pinoresinol, Phytochemistry, 31, 3875–3881.CrossRefGoogle Scholar
  58. 58.
    Chu, A., Dinkova, A., Davin, L. B., Bedgar, D. L., and Lewis, N. G. (1993) Stereospecificity of (+)-pinoresinol and (+)-lariciresinol reductases from Forsythia intermedia, J. Biol. Chem., 268, 27026–27033.Google Scholar
  59. 59.
    Tholl, D. (2015) Biosynthesis and biological functions of terpenoids in plants, Adv. Biochem. Eng. Biotechnol., 148, 63–106.Google Scholar
  60. 60.
    Irmler, S., Schroder, G., St-Pierre, B., Crouch, N. P., Hotze, M., Schmidt, J., Strack, D., Matern, U., and Schroder, J. (2000) Indole alkaloid biosynthesis in Catharanthus roseus: new enzyme activities and identification of cytochrome P450 CYP72A1 as secologanin synthase, Plant J., 24, 797–804.CrossRefGoogle Scholar
  61. 61.
    Bancos, S., Nomura, T., Sato, T., Molnar, G., Bishop, G. J., Koncz, C., Yokota, T., Nagy, F., and Szekeres, M. (2002) Regulation of transcript levels of the Arabidopsis cytochrome P450 genes involved in brassinosteroid biosynthesis, Plant Physiol., 130, 504–513.CrossRefGoogle Scholar
  62. 62.
    Fukushima, E. O., Seki, H., and Muranaka, T. (2014) Plant cytochrome P450s in triterpenoid biosynthesis: diversity and application to combinatorial biosynthesis, in Fifty Years of Cytochrome P450 Research (Yamazaki, H., ed.), Springer, Japan, pp. 125–133.Google Scholar
  63. 63.
    Mousavi, A., and Hotta, Y. (2005) Glycine-rich proteins: a class of novel proteins, Appl. Biochem. Biotechnol., 120, 169–174.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • G. Yu
    • 1
  • Y. Yu
    • 2
  • H. Fan
    • 2
    • 3
    Email author
  • D. Zhang
    • 2
  • N. Cui
    • 2
  • X. Wang
    • 1
  • S. Jia
    • 2
  • Y. Yang
    • 2
  • J. Zhao
    • 2
  1. 1.College of HorticultureShenyang Agricultural UniversityShenyangPR China
  2. 2.College of Bioscience and BiotechnologyShenyang Agricultural UniversityShenyangPR China
  3. 3.Key Laboratory of Protected Horticulture of Ministry of EducationShenyang Agricultural UniversityShenyangPR China

Personalised recommendations