Advertisement

Biochemistry (Moscow)

, Volume 84, Issue 8, pp 941–953 | Cite as

Role of TGF-β1 and C-Kit Mutations in the Development of Hepatocellular Carcinoma in Hepatitis C Virus-Infected Patients: in vitro Study

  • M. E. El-Houseini
  • A. Ismail
  • A. A. Abdelaal
  • A. H. El-Habashy
  • Z. F. Abdallah
  • M. Z. Mohamed
  • M. El-Hadidi
  • W. C. S. Cho
  • H. Ahmed
  • T. A. Al-ShafieEmail author
Article
  • 6 Downloads

Abstract

Transforming growth factor beta (TGF-β) acts as a tumor-suppressing cytokine in healthy tissues and non-malignant tumors. Yet, in malignancy, TGF-β can exert the opposite effects that can promote proliferation of cancer cells. C-Kit plays a prominent role in stem cell activation and liver regeneration after injury. However, little is known about the cross-talk between TGF-β and C-Kit and its role in the progression of hepatocellular carcinoma (HCC). Here, we studied the effect of increasing doses of TGF-β1 on CD44+CD90+ liver stem cells (LSCs) and C-Kit gene expression in malignant and adjacent non-malignant liver tissues excised from 32 HCC patients. The percentage of LSCs in malignant tumors was two times higher compared to their counterparts from the non-malignant tissues. When treated with increasing doses of TGF-β1, proliferation of both malignant and non-malignant LSCs was progressively suppressed, but low TGF-β1 dose failed to suppress the growth of malignant LSCs. Moreover, C-Kit exons 9 and 11 were expressed in malignant LSCs, but not in their non-malignant counterparts. Analysis of C-Kit detected mutations in exon 9 (but not in exon 11) in some malignant liver cells resulting in the changes in the amino acid sequence and dysregulation of protein structure and function. Interestingly, in malignant liver cells, mutations in exon 9 were associated with high-viremia hepatitis C virus (HCV), and expression of this exon was not suppressed by the TGF-β1 treatment at all doses. To our knowledge, this is the first report that mutations in the C-Kit gene in HCC patients are associated with high-viremia HCV. Our study emphasizes the need for investigation of the TGF-β1 level and C-Kit mutations in patients with chronic HCV for HCC prevention and better therapy management.

Keywords

hepatocellular carcinoma chronic liver disease TGF-β1 liver stem cells C-Kit mutations 

Abbreviations

C-Kit

stem cell factor receptor

CSC

cancer stem cell

HCC

hepatocellular carcinoma

HCV

hepatitis C virus

LSC

liver stem cell

Peg-INF

pegylated interferon

SCF

stem cell factor

TGF-β1

transforming growth factor beta 1

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This study was supported by the National Cancer Institute, Cairo University, Egypt. The authors would like to thank all members of the Cancer Biology Department for their help.

Funding. This study was supported in part by the National Institutes of Health (grant CA203420 to HA).

Conflict of interest. The authors declare no conflict of interest.

Ethical approval. The study was carried out with permission from the Institution Review Board (IRB) of National Cancer Institute, Cairo University (#IRB00004025) in accordance with applicable institutional and international regulations and guidelines and confirmed to the provisions of the Declaration of Helsinki.

Patient consent for publication. All patients were informed of the investigational nature of this study and provided their written informed consent.

Availability of data and materials. The datasets generated and/or analyzed in this study are available from http://www.chemcomp.com.

References

  1. 1.
    Friedman, S. L. (2008) Mechanisms of hepatic fibrogenesis, Gastroenterology, 134, 1655–1669.CrossRefGoogle Scholar
  2. 2.
    Jemal, A., Bray, F., Center, M. M., Ferlay, J., Ward, E., and Forman, D. (2011) Global cancer statistics, CA Cancer J. Clin., 61, 69–90.CrossRefGoogle Scholar
  3. 3.
    Rao, S., Zaidi, S., Banerjee, J., Jogunoori, W., Sebastian, R., Mishra, B., Nguyen, B. N., Wu, R. C., White, J., Deng, C., Amdur, R., Li, S., and Mishra, L. (2017) Transforming growth factor-β in liver cancer stem cells and regeneration, Hepatol. Commun., 1, 477–493.CrossRefGoogle Scholar
  4. 4.
    Dragu, D. L., Necula, L. G., Bleotu, C., Diaconu, C. C., and Chivu-Economescu, M. (2015) Therapies targeting cancer stem cells: current trends and future challenges, World J. Stem Cells, 7, 1185–1201.Google Scholar
  5. 5.
    Xu, L. B., and Liu, C. (2014) Role of liver stem cells in hepatocarcinogenesis, World J. Stem Cells, 6, 579–590.CrossRefGoogle Scholar
  6. 6.
    Qiu, L., Li, H., Fu, S., Chen, X., and Lu, L. (2018) Surface markers of liver cancer stem cells and innovative targeted-therapy strategies for HCC, Oncol. Lett., 15, 2039–2048.Google Scholar
  7. 7.
    Yamashita, T., Honda, M., Nakamoto, Y., Baba, M., Nio, K., Hara, Y., Zeng, S. S., Hayashi, T., Kondo, M., Takatori, H., Yamashita, T., Mizukoshi, E., Ikeda, H., Zen, Y., Takamura, H., Wang, X. W., and Kaneko, S. (2013) Discrete nature of EpCAM+ and CD90+ cancer stem cells in hepatocellular carcinoma, Hepatology, 57, 1484–1497.CrossRefGoogle Scholar
  8. 8.
    Yamashita, T., Ji, J., Budhu, A., Forgues, M., Yang, W., Wang, H. Y., Jia, H., Ye, Q., Qin, L. X., Wauthier, E., Reid, L. M., Minato, H., Honda, M., Kaneko, S., Tang, Z. Y., and Wang, X. W. (2009) EpCAM-positive hepatocellular carcinoma cells are tumor-initiating cells with stem/progenitor cell features, Gastroenterology, 136, 1012–1024.CrossRefGoogle Scholar
  9. 9.
    Ding, W., Mouzaki, M., You, H., Laird, J. C., Mato, J., Lu, S. C., and Rountree, C. B. (2009) CD133+ liver cancer stem cells from methionine adenosyl transferase 1A-deficient mice demonstrate resistance to transforming growth factor (TGF)-beta-induced apoptosis, Hepatology, 49, 1277–1286.CrossRefGoogle Scholar
  10. 10.
    Xiang, Y., Yang, T., Pang, B. Y., Zhu, Y., and Liu, Y. N. (2016) The progress and prospects of putative biomarkers for liver cancer stem cells in hepatocellular carcinoma, Stem Cells Int., 2016, 7614971.CrossRefGoogle Scholar
  11. 11.
    Amin, R., and Mishra, L. (2008) Liver stem cells and TGF-β in hepatic carcinogenesis, Gastrointest. Cancer Res., 2, S27–S30.Google Scholar
  12. 12.
    Majumdar, A., Curley, S. A., Wu, X., Brown, P., Hwang, J. P., Shetty, K., Yao, Z. X., He, A. R., Li, S., Katz, L., Farci, P., and Mishra, L. (2012) Hepatic stem cells and transforming growth factor-β in hepatocellular carcinoma, Nat. Rev. Gastroenterol. Hepatol., 9, 530–538.CrossRefGoogle Scholar
  13. 13.
    Ren, X., Hu, B., and Colletti, L. (2008) Stem cell factor and its receptor, c-kit, are important for hepatocyte proliferation in wild-type and tumor necrosis factor receptor-1 knockout mice after 70% hepatectomy, Surgery, 143, 790–802.CrossRefGoogle Scholar
  14. 14.
    Chen, L., Shen, R., Ye, Y., Pu, X. A., Liu, X., Duan, W., Wen, J., Zimmerer, J., Wang, Y., Liu, Y., Lasky, L. C., Heerema, N. A., Perrotti, D., Ozato, K., Kuramochi-Miyagawa, S., Nakano, T., Yates, A. J., Carson, W. E., 3rd, Lin, H., Barsky, S. H., and Gao, J. X. (2007) Precancerous stem cells have the potential for both benign and malignant differentiation, PLoS One, 2, e293.CrossRefGoogle Scholar
  15. 15.
    Rojas, A., Zhang, P., Wang, Y., Foo, W. C., Munoz, N. M., Xiao, L., Wang, J., Gores, G. J., Hung, M. C., and Blechacz, B. (2016) A positive TGF-β/C-KIT feedback loop drives tumor progression in advanced primary liver cancer, Neoplasia, 18, 371–386.CrossRefGoogle Scholar
  16. 16.
    Wang, M. K., Sun, H. Q., Xiang, Y. C., Jiang, F., Su, Y. P., and Zou, Z. M. (2012) Different roles of TGF-β in the multi-lineage differentiation of stem cells, World J. Stem Cells, 4, 28–34.CrossRefGoogle Scholar
  17. 17.
    Anzano, M. A., Roberts, A. B., Smith, J. M., Sporn, M. B., and De Larco, J. E. (1983) Sarcoma growth factor from conditioned medium of virally transformed cells is composed of both type alpha and type beta transforming growth factors, Proc. Natl. Acad. Sci. USA, 80, 6264–6268.CrossRefGoogle Scholar
  18. 18.
    Altschul, S. F., Gish, W., Miller, W., Myers, E. W., and Lipman, D. J. (1990) Basic local alignment search tool, J. Mol. Biol., 215, 403–410.CrossRefGoogle Scholar
  19. 19.
    Weckx, S., Del-Favero, J., Rademakers, R., Claes, L., Cruts, M., De-Jonghe, P., Van Broeckhoven, C., and De Rijk, P. (2005) NovoSNP, a novel computational tool for sequence variation discovery, Genome Res., 15, 436–442.CrossRefGoogle Scholar
  20. 20.
    Hall, T. A. (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT, Nucleic Acids Symp. Ser., 41, 95–98.Google Scholar
  21. 21.
    Chemical Computing Group: the molecular operating environment (MOE), version 2010.10. Chemical Computing Group, Montreal, QC, Canada (2010) (http://www.chemcomp.com).
  22. 22.
    Kumar, P., Henikoff, S., and Ng, P. C. (2009) Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm, Nat. Protoc., 4, 1073–1081.CrossRefGoogle Scholar
  23. 23.
    Jones, P., Binns, D., Chang, H. Y., Fraser, M., Li, W., McAnulla, C., McWilliam, H., Maslen, J., Mitchell, A., Nuka, G., Pesseat, S., Quinn, A. F., Sangrador-Vegas, A., Scheremetjew, M., Yong, S. Y., Lopez, R., and Hunter, S. (2014) InterProScan 5: genome-scale protein function classification, Bioinformatics, 30, 1236–1240.CrossRefGoogle Scholar
  24. 24.
    Finn, R. D., Attwood, T. K., Babbitt, P. C., Bateman, A., Bork, P., Bridge, A. J., Chang, H. Y., Dosztanyi, Z., El-Gebali, S., Fraser, M., Gough, J., Haft, D., Holliday, G. L., Huang, H., Huang, X., Letunic, I., Lopez, R., Lu, S., Marchler-Bauer, A., Mi, H., Mistry, J., Natale, D. A., Necci, M., Nuka, G., Orengo, C. A., Park, Y., Pesseat, S., Piovesan, D., Potter, S. C., Rawlings, N. D., Redaschi, N., Richardson, L., Rivoire, C., Sangrador-Vegas, A., Sigrist, C., Sillitoe, I., Smithers, B., Squizzato, S., Sutton, G., Thanki, N., Thomas, P. D., Tosatto, S. C., Wu, C. H., Xenarios, I., Yeh, L. S., Young, S. Y., and Mitchell, A. L. (2017) InterPro in 2017-beyond protein family and domain annotations, Nucleic Acids Res., 45, D190–D199.CrossRefGoogle Scholar
  25. 25.
    Oishi, N., and Wang, X. W. (2011) Novel therapeutic strategies for targeting liver cancer stem cells, Int. J. Biol. Sci., 7, 517–535.CrossRefGoogle Scholar
  26. 26.
    Tanaka, M., Itoh, T., Tanimizu, N., and Miyajima, A. (2011) Liver stem/progenitor cells: their characteristics and regulatory mechanisms, J. Biochem., 149, 231–239.CrossRefGoogle Scholar
  27. 27.
    Irfan, A., and Ahmed, I. (2015)) Could stem cell therapy be the cure in liver cirrhosis? J. Clin. Exp. Hepatol., 5, 142–146.CrossRefGoogle Scholar
  28. 28.
    Yashpal, N. K., Li, J., and Wang, R. (2004) Characterization of c-Kit and nestin expression during islet cell development in the prenatal and postnatal rat pancreas, Dev. Dyn., 229, 813–825.CrossRefGoogle Scholar
  29. 29.
    Mansuroglu, T., Baumhoer, D., Dudas, J., Haller, F., Cameron, S., Lorf, T., Fuzesi, L., and Ramadori, G. (2009) Expression of stem cell factor receptor c-kit in human non-tumoral and tumoral hepatic cells, Eur. J. Gastroenterol. Hepatol., 21, 1206–1211.CrossRefGoogle Scholar
  30. 30.
    Abbaspour Babaei, M., Kamalidehghan, B., Saleem, M., Huri, H. Z., and Ahmadipour, F. (2016) Receptor tyrosine kinase (c-Kit) inhibitors: a potential therapeutic target in cancer cells, Drug Des. Devel. Ther., 10, 2443–2459.CrossRefGoogle Scholar
  31. 31.
    Hussain, S. R., Naqvi, H., Ahmed, F., Babu, S. G., Bansal, C., and Mahdi, F. (2012) Identification of the c-kit gene mutations in biopsy tissues of mammary gland carcinoma tumor, J. Egypt. Natl. Canc. Inst., 24, 97–103.CrossRefGoogle Scholar
  32. 32.
    McDonell, L. M., Kernohan, K. D., Boycott, K. M., and Sawyer, S. L. (2015) Receptor tyrosine kinase mutations in developmental syndromes and cancer: two sides of the same coin, Hum. Mol. Genet., 24, R60–66.CrossRefGoogle Scholar
  33. 33.
    Lennartsson, J., and Ronnstrand, L. (2006) The stem cell factor receptor/c-Kit as a drug target in cancer, Curr. Cancer Drug Targets, 6, 561–571.CrossRefGoogle Scholar
  34. 34.
    El-Serafi, M. M., Bahnassy, A. A., Ali, N. M., Eid, S. M., Kamel, M. M., Abdel-Hamid, N. A., and Zekri, A. R. (2010) the prognostic value of c-Kit, K-ras codon 12, and p53 codon 72 mutations in Egyptian patients with stage II colorectal cancer, Cancer, 116, 4954–4964.CrossRefGoogle Scholar
  35. 35.
    Cardoso, H. J., Figueira, M. I., and Socorro, S. (2017) The stem cell factor (SCF)/c-KIT signaling in testis and prostate cancer, J. Cell Commun. Signal., 11, 297–307.CrossRefGoogle Scholar
  36. 36.
    Paronetto, M. P., Farini, D., Sammarco, I., Maturo, G., Vespasiani, G., Geremia, R., Rossi, P., and Sette, C. (2004) Expression of a truncated form of the c-Kit tyrosine kinase receptor and activation of Src kinase in human prostatic cancer, Am. J. Pathol., 164, 1243–1251.CrossRefGoogle Scholar
  37. 37.
    Bai, C. G., Liu, X. H., Xie, Q., Feng, F., and Ma, D. L. (2005) A novel gain of function mutant in C-kit gene and its tumorigenesis in nude mice, World J. Gastroenterol., 11, 7104–7108.CrossRefGoogle Scholar
  38. 38.
    Sun, Q., Guo, S., Wang, C. C., Sun, X., Wang, D., Xu, N., Jin, S. F., and Li, K. Z. (2015) Cross-talk between TGF-β/ Smad pathway and Wnt/β-catenin pathway in pathological scar formation, Int. J. Clin. Exp. Pathol., 8, 7631–7639.Google Scholar
  39. 39.
    Lee, B. H., Chen, W., Stippec, S., and Cobb, M. H. (2007) Biological cross-talk between WNK1 and the transforming growth factor-Smad signaling pathway, J. Biol. Chem., 282, 17985–17996.CrossRefGoogle Scholar
  40. 40.
    Tekin Koruk, S., Ozardali, I., Dinзoglu, D., Guldur, M., and Calisir, C. (2012) Can the presence of C-Kit-positive hepatic progenitor cells in chronic hepatitis C have a role in the follow-up of the disease? Erciyes Med. J., 34, 44–49.CrossRefGoogle Scholar
  41. 41.
    Kwon, Y. C., Bose, S. K., Steele, R., Meyer, K., Di Bisceglie, A. M., Ray, R. B., and Ray, R. (2015) Promotion of cancer stem-like cell properties in hepatitis C virus-infected hepatocytes, J. Virol., 89, 11549–11556.CrossRefGoogle Scholar
  42. 42.
    Du, Y., Su, T., Ding, Y., and Cao, G. (2012) Effects of antiviral therapy on the recurrence of hepatocellular carcinoma after curative resection or liver transplantation, Hepat. Mon., 12, e6031.CrossRefGoogle Scholar
  43. 43.
    Li, L., Liu, W., Chen, Y. H., Fan, C. L., Dong, P. L., Wei, F. L., Li, B., Chen, D. X., and Ding, H. G. (2013) Antiviral drug resistance increases hepatocellular carcinoma: a prospective decompensated cirrhosis cohort study, World J. Gastroenterol., 19, 8373–8381.CrossRefGoogle Scholar
  44. 44.
    Shah, Y. M., and van den Brink, G. R. (2015) c-kit as a novel potential therapeutic target in colorectal cancer, Gastroenterology, 149, 534–537.CrossRefGoogle Scholar
  45. 45.
    Chung, C. Y., Yeh, K. T., Hsu, N. C., Chang, J. H., Lin, J. T., Horng, H. C., and Chang, C. S. (2005) Expression of c-kit protooncogene in human hepatocellular carcinoma, Cancer Lett., 217, 231–236.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • M. E. El-Houseini
    • 1
  • A. Ismail
    • 2
  • A. A. Abdelaal
    • 2
  • A. H. El-Habashy
    • 3
  • Z. F. Abdallah
    • 1
  • M. Z. Mohamed
    • 4
  • M. El-Hadidi
    • 5
  • W. C. S. Cho
    • 6
  • H. Ahmed
    • 7
  • T. A. Al-Shafie
    • 1
    • 8
    Email author
  1. 1.Cairo University, National Cancer Institute, Department of Cancer BiologyCairoEgypt
  2. 2.Ain Shams University, Faculty of Medicine, Department of SurgeryCairoEgypt
  3. 3.Cairo University, National Cancer Institute, Department of PathologyCairoEgypt
  4. 4.Medical Center of Egyptian Railways, Department of Medical LaboratoryCairoEgypt
  5. 5.Nile University, Center of Informatics ScienceGizaEgypt
  6. 6.Queen Elizabeth Hospital, Department of Clinical OncologyKowloon, Hong KongChina
  7. 7.GlycoMantra, Inc.BaltimoreUSA
  8. 8.Pharos University in Alexandria, Faculty of Pharmacy and Drug Manufacturing, Department of Pharmacology and TherapeuticsAlexandriaEgypt

Personalised recommendations