Advertisement

Biochemistry (Moscow)

, Volume 84, Issue 8, pp 923–930 | Cite as

Comparison of the Size and Properties of the Cytochrome c/Cardiolipin Nanospheres in a Sediment and Non-polar Medium

  • G. K. VladimirovEmail author
  • V. E. Remenshchikov
  • A. M. Nesterova
  • V. V. Volkov
  • Yu. A. Vladimirov
Article
  • 4 Downloads

Abstract

Apoptosis, as the major type of programmed cell death, plays an important role in the organism renewal and removal of defective and transformed cells, including cancer cells. One of the earliest apoptotic events is lipid peroxidation in the inner mitochondrial membrane catalyzed by a complex of cytochrome c (CytC) with the mitochondrial phospholipid cardiolipin (CL). It was shown that mixing CytC and CL solutions results in the formation of CytC/CL complexes (Cyt-CL nanospheres) with a diameter of 11–12 nm composed of the molten globule protein molecule and a CL monolayer. Using the methods of dynamic light scattering for the Cyt-CL chloroform solution and small-angle X-ray scattering for the Cyt-CL sediment, it was found that in both cases, Cyt-CL formed nanospheres with a diameter of 8 and 11 nm, which corresponded to the earlier determined lipid/protein ratios of 13–14 and 35–50, respectively. These results showed that the Cyt-CL nanospheres can form not only during crystallization but also in a hydrophobic medium. CytC in the complex exists as a molten globule, as evidenced by the emergence of tryptophan and tyrosine fluorescence (absent in the native protein) due to the Förster resonance transfer of the electron excitation energy onto the heme. At the same time, the coordinate bond between the heme iron and the sulfur atom of methionine 80 in Cyt-CL is disrupted (the absorption band at ~700 nm disappears). Similar disruption of the iron-sulfur bond in Cyt-CL was observed in 50% methanol. These changes were reversible, which corroborates the conclusion on the CytC transition to the molten globule conformation in methanol-containing solutions.

Keywords

apoptosis cytochrome c cardiolipin Cyt-CL complex hydrophobic medium dynamic light scattering small-angle X-ray scattering molten globule 

Abbreviations

>Fe3+-S(Met80)

iron-sulfur bond between cytochrome c heme iron and methionine 80 sulfur atom

CL

cardiolipin

CytC

cytochrome c

Cyt-CL

cytochrome c/cardiolipin complex

DLS

dynamic light scattering

SAXS

small angle X-ray scattering

TOCL

1,1′,2,2′-tetraoleyl cardiolipin

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Funding. This work was supported by the Russian Foundation for Basic Research (project 17-74-10248), the Ministry of Science and Higher Education within the framework of the State Budget Project for the Crystallography and Photonics Federal Scientific Research Center (development of software for analysis of SAXS data), and the ESRF BAG MX-2079 project (registration of SAXS on the BioSAXS BM29 station). The study used the equipment of the Multi-access Computing Center of the Crystallography and Photonics Federal Scientific Research Centre, Russian Academy of Sciences.

Conflict of interest. The authors declare no conflict of interest in financial or any other sphere.

Ethical approval. This article contains no studies with human participants or animals performed by any of the authors.

References

  1. 1.
    Ouyang, L., Shi, Z., Zhao, S., Wang, F. T., Zhou, T. T., Liu, B., and Bao, J. K. (2012) Programmed cell death pathways in cancer: a review of apoptosis, autophagy and programmed necrosis, Cell Prolif., 45, 487–498, doi:  https://doi.org/10.1111/j.1365-2184.2012.00845.x.CrossRefGoogle Scholar
  2. 2.
    Saleem, M., Asif, J., Asif, M., and Saleem, U. (2018) Amygdalin, from apricot kernels, induces apoptosis and causes cell cycle arrest in cancer cells: an updated review, Anticancer Agents Med. Chem., 18, 1650–1655, doi:  https://doi.org/10.2174/1871520618666180105161136.CrossRefGoogle Scholar
  3. 3.
    Kagan, V. E., Borisenko, G. G., Tyurina, Y. Y., Tyurin, V. A., Jiang, J., Potapovich, A. I., Kini, V., Amoscato, A. A., and Fujii, Y. (2004) Oxidative lipidomics of apoptosis: redox catalytic interactions of cytochrome c with cardiolipin and phosphatidylserine, Free Radic. Biol. Med., 37, 1963–1985, doi:  https://doi.org/10.1016/j.freeradbiomed.2004.08.016.CrossRefGoogle Scholar
  4. 4.
    Kagan, V. E., Tyurin, V. A., Jiang, J., Tyurina, Y. Y., Ritov, V. B., Amoscato, A. A., Osipov, A. N., Belikova, N. A., Kapralov, A. A., and Kini, V. (2005) Cytochrome c acts as a cardiolipin oxygenase required for release of proapoptotic factors, Nature Chem. Biol., 1, 223–232, doi:  https://doi.org/10.1038/nchembio727.i.CrossRefGoogle Scholar
  5. 5.
    Kagan, V. E., Bayir, A., Bayir, H., Stoyanovsky, D., Borisenko, G. G., Tyurina, Y. Y., Wipf, P., Atkinson, J., Greenberger, J. S., Chapkin, R. S., and Belikova, N. A. (2009) Mitochondria-targeted disruptors and inhibitors of cytochrome c/cardiolipin peroxidase complexes: a new strategy in anti-apoptotic drug discovery, Mol. Nutr. Food Res., 53, 104–114, doi:  https://doi.org/10.1002/mnfr.200700402.CrossRefGoogle Scholar
  6. 6.
    Brown, L. R., and Wuthrich, K. (1977) NMR and ESR studies of the interactions of cytochrome c with mixed cardiolipin-phosphatidylcholine vesicles, Biochim. Biophys. Acta, 468, 389–410, doi:  https://doi.org/10.1016/0005-2736(77)90290-5.CrossRefGoogle Scholar
  7. 7.
    Sinibaldi, F., Howes, B. D., Piro, M. C., Polticelli, F., Bombelli, C., Ferri, T., Coletta, M., Smulevich, G., and Santucci, R. (2010) Extended cardiolipin anchorage to cytochrome c: a model for protein-mitochondrial membrane binding, J. Biol. Inorg. Chem., 15, 689–700, doi:  https://doi.org/10.1007/s00775-010-0636-z.CrossRefGoogle Scholar
  8. 8.
    Mandal, A., Hoop, C. L., DeLucia, M., Kodali, R., Kagan, V. E., Ahn, J., and van der Wel, P. C. (2015) Structural changes and proapoptotic peroxidase activity of cardiolipin-bound mitochondrial cytochrome c, Biophys. J., 109, 1873–1884, doi:  https://doi.org/10.1016/j.bpj.2015.09.016.Google Scholar
  9. 9.
    Hanske, J., Toffey, J. R., Morenz, A. M., Bonilla, A. J., Schiavoni, K. H., and Pletneva, E. V. (2012) Conformational properties of cardiolipin-bound cytochrome c, Proc. Natl. Acad. Sci. USA, 109, 125–130, doi:  https://doi.org/10.1073/pnas.1112312108.CrossRefGoogle Scholar
  10. 10.
    Kagan, V. E., Bayir, H. A., Belikova, N. A., Kapralov, O., Tyurina, Y. Y., Tyurin, V. A., Jiang, J., Stoyanovsky, D. A., Wipf, P., Kochanek, P. M., Greenberger, J. S., Pitt, B., Shvedova, A. A., and Borisenko, G. (2009) Cytochrome c/cardiolipin relations in mitochondria: a kiss of death, Free Rad. Biol. Med., 46, 1439–1453, doi:  https://doi.org/10.1016/j.freeradbiomed.2009.03.004.CrossRefGoogle Scholar
  11. 11.
    Vladimirov, Y. A., Proskurnina, E. V., and Alekseev, A. V. (2013) Molecular mechanisms of apoptosis. Structure of cytochrome c-cardiolipin complex, Biochemistry (Moscow), 78, 1086–1097, doi:  https://doi.org/10.1134/S0006297913100027.CrossRefGoogle Scholar
  12. 12.
    Jemmerson, R., Liu, J., Hausauer, D., Lam, K. P., Mondino, A., and Nelson, R. D. (1999) A conformational change in cytochrome c of apoptotic and necrotic cells is detected by monoclonal antibody binding and mimicked by association of the native antigen with synthetic phospholipid vesicles, Biochemistry, 38, 3599–3609, doi:  https://doi.org/10.1021/bi9809268.CrossRefGoogle Scholar
  13. 13.
    Tuominen, E. K., Zhu, K., Wallace, C. J., Clark-Lewis, I., Craig, D. B., Rytomaa, M., and Kinnunen, P. K. (2001) ATP induces a conformational change in lipid-bound cytochrome c, J. Biol. Chem., 276, 19356–19362, doi:  https://doi.org/10.1074/jbc.M100853200.CrossRefGoogle Scholar
  14. 14.
    Balakrishnan, G., Hu, Y., Oyerinde, O. F., Su, J., Groves, J. T., and Spiro, T. G. (2007) A conformational switch to beta-sheet structure in cytochrome c leads to heme exposure. Implications for cardiolipin peroxidation and apoptosis, J. Amer. Chem. Soc., 129, 504–505, doi:  https://doi.org/10.1021/ja0678727.CrossRefGoogle Scholar
  15. 15.
    Hong, Y., Muenzner, J., Grimm, S. K., and Pletneva, E. V. (2012) Origin of the conformational heterogeneity of cardiolipin-bound cytochrome c, J. Amer. Chem. Soc., 134, 18713–18723, doi:  https://doi.org/10.1021/ja307426k.CrossRefGoogle Scholar
  16. 16.
    Vladimirov, Y. A., Nol’, Y. T., and Volkov, V. V. (2011) Protein-lipid nanoparticles that determine whether cells will live or die, Crystallogr. Rep., 56, 553–559, doi:  https://doi.org/10.1134/S1063774511040250.CrossRefGoogle Scholar
  17. 17.
    Kapralov, A. A., Yanamala, N., Tyurina, Y. Y., Castro, L., Samhan-Arias, A., Vladimirov, Y. A., Maeda, A., Weitz, A.A., Peterson, J., Mylnikov, D., Demicheli, V., Tortora, V., Klein-Seetharaman, J., Radi, R., and Kagan, V. E. (2011) Topography of tyrosine residues and their involvement in peroxidation of polyunsaturated cardiolipin in cytochrome c/cardiolipin peroxidase complexes, Biochim. Biophys. Acta, 1808, 2147–2155, doi:  https://doi.org/10.1016/j.bbamem.2011.04.009.CrossRefGoogle Scholar
  18. 18.
    Belikova, N. A., Vladimirov, Y. A., Osipov, A. N., Kapralov, A. A., Tyurin, V. A., Potapovich, M. V., Basova, L. V., Peterson, J., Kurnikov, I. V., and Kagan, V. E. (2006) Peroxidase activity and structural transitions of cytochrome c bound to cardiolipin-containing membranes, Biochemistry, 45, 4998–5009, doi:  https://doi.org/10.1021/bi0525573.CrossRefGoogle Scholar
  19. 19.
    Kapralov, A. A., Kurnikov, I. V., Vlasova, I. I., Belikova, N. A., Tyurin, V. A., Basova, L. V., Zhao, Q., Tyurina, Y. Y., Jiang, J., Bayir, H., Vladimirov, Y. A., and Kagan, V. E. (2007) The hierarchy of structural transitions induced in cytochrome c by anionic phospholipids determines its peroxidase activation and selective peroxidation during apoptosis in cells, Biochemistry, 46, 14232–14244, doi:  https://doi.org/10.1021/bi701237b.CrossRefGoogle Scholar
  20. 20.
    Proskurnina, E. V., Alekseev, A. V., Demin, E. M., Izmailov, D. Y., and Vladimirov, Y. A. (2013) Cyt-CL complex: peroxidase activity and role in lipid peroxidation, FEBS J., 280, 264–264.Google Scholar
  21. 21.
    Vladimirov, G. K., Vikulina, A. S., Volodkin, D., and Vladimirov, Y. A. (2018) Structure of the complex of cytochrome c with cardiolipin in non-polar environment, Chem. Phys. Lipids, 214, 35–45, doi:  https://doi.org/10.1016/j.chemphyslip.2018.05.007.CrossRefGoogle Scholar
  22. 22.
    Konarev, P. V., Volkov, V. V., Sokolova, A. V., Koch, M. H. J., and Svergun, D. I. (2003) PRIMUS: a Windows PC-based system for small-angle scattering data analysis, J. Appl. Crystallogr., 36, 1277–1282, doi:  https://doi.org/10.1107/S002188980301277923.CrossRefGoogle Scholar
  23. 23.
    Folch, J., Lees, M., and Sloane Stanley, G. H. (1957) A simple method for the isolation and purification of total lipids from animal tissues, J. Biol. Chem., 226, 497–509Google Scholar
  24. 24.
    Vikulina, A. S., Alekseev, A. V., Proskurnina, E. V., and Vladimirov, Y. A. (2015) The complex of cytochrome c with cardiolipin in non-polar environment, Biochemistry (Moscow), 80, 1298–1302, doi:  https://doi.org/10.1134/S0006297915100107.CrossRefGoogle Scholar
  25. 25.
    Ali, S., Farooqi, H., Prasad, R., Naime, M., Routray, I., Yadav, S., and Ahmad, F. (2010) Boron stabilizes peroxide mediated changes in the structure of heme proteins, Int. J. Biol. Macromol., 47, 109–115, doi:  https://doi.org/10.1016/j.ijbiomac.2010.05.013.CrossRefGoogle Scholar
  26. 26.
    Kobayashi, H., Nagao, S., and Hirota, S. (2016) Characterization of the cytochrome c membrane-binding site using cardiolipin-containing bicelles with NMR, Angewandte Chem. Int. Ed., 55, 14019–14022, doi:  https://doi.org/10.1002/anie.201607419.CrossRefGoogle Scholar
  27. 27.
    Proskurnina, E. V., Proskurnin, M. A., Alekseev, A. V., Galimova, V. R., and Vladimirov, Yu. A. (2018) Determination of a composition of cytochrome c/cardiolipin complex by spectrophotometry and thermal-lens spectrometry, Tekhnol. Zhivykh Sistem, 15, 27–33.Google Scholar
  28. 28.
    Sinibaldi, F., Howes, B. D., Droghetti, E., Polticelli, F., Piro, M. C., Di Pierro, D., Fiorucci, L., Coletta, M., Smulevich, G., and Santucci, R. (2013) Role of lysins in cytochrome c-cardiolipin interaction, Biochemistry, 52, 4578–4588, doi:  https://doi.org/10.1021/bi400324c.CrossRefGoogle Scholar
  29. 29.
    Kitt, J. P., Bryce, D. A., Minteer, S. D., and Harris, J. M. (2017) Raman spectroscopy reveals selective interactions of cytochrome c with cardiolipin that correlate with membrane permeability, J. Am. Chem. Soc., 139, 3851–3860, doi:  https://doi.org/10.1021/jacs.7b00238.CrossRefGoogle Scholar
  30. 30.
    Miyamoto, S., Nantes, I. L., Faria, P. A., Cunha, D., Ronsein, G. E., Medeiros, M. H., and Di Mascio, P. (2012) Cytochrome c-promoted cardiolipin oxidation generates singlet molecular oxygen, Photochem. Photobiol. Sci., 11, 1536–1546, doi:  https://doi.org/10.1039/c2pp25119a.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • G. K. Vladimirov
    • 1
    • 2
    Email author
  • V. E. Remenshchikov
    • 1
  • A. M. Nesterova
    • 1
    • 2
  • V. V. Volkov
    • 1
    • 3
  • Yu. A. Vladimirov
    • 1
    • 2
    • 4
    • 5
  1. 1.Shubnikov Institute of Crystallography, Crystallography and Photonics Federal Scientific Research CentreRussian Academy of SciencesMoscowRussia
  2. 2.Institute of Regenerative MedicineSechenov First Moscow State Medical University, Ministry of Public Health of Russian FederationMoscowRussia
  3. 3.Kurchatov National Institute Research CenterMoscowRussia
  4. 4.Pirogov Russian National Research Medical University, Ministry of Public Health of Russian FederationMoscowRussia
  5. 5.Lomonosov Moscow State University, Faculty of Fundamental MedicineMoscowRussia

Personalised recommendations