Advertisement

Biochemistry (Moscow)

, Volume 84, Issue 8, pp 911–922 | Cite as

Photophysical Properties of Upconverting Nanoparticle–Phthalocyanine Complexes

  • D. A. GvozdevEmail author
  • E. P. Lukashev
  • V. V. Gorokhov
  • V. Z. Pashchenko
Article

Abstract

Interaction between upconverting nanoparticles and aluminum octacarboxyphthalocyanine was studied. The efficiency of non-radiative energy transfer from the nanoparticles to phthalocyanine increased with the number of phthalocyanine molecules adsorbed on the nanoparticle, but only up to a certain limit. Further increase in the phthalocyanine concentration resulted in a decrease of its sensitized fluorescence due to the dimerization of dye molecules on the nanoparticle surface. When subjected to infrared irradiation, phthalocyanine molecules in the hybrid complex generated singlet oxygen. The observed effects are of interest in regard to the targeted search for new components of efficient third-generation hybrid photosensitizers.

Keywords

UCNP upconversion photosensitizers FRET singlet oxygen 

Abbreviations

(Al)Pc

(aluminum) phthalocyanine

PDT

photodynamic therapy

RNO

p-nitrosodimethylaniline

ROS

reactive oxygen species

TCSPC

time-correlated single photon counting

(UC)NP

(upconverting) nanoparticle

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Conflict of interest. The authors declare no conflict of interest in financial or any other sphere.

Ethical approval. This article does not contain any studies with human participants or animals performed by any of the authors.

References

  1. 1.
    Chen, G., Qiu, H., Prasad, P. N., and Chen, X. (2014) Upconversion nanoparticles: design, nanochemistry, and applications in theranostics, Chem. Rev., 114, 5161–5214; doi:  https://doi.org/10.1021/cr400425h.CrossRefGoogle Scholar
  2. 2.
    Auzel, F. (2004) Upconversion and anti-stokes processes with f and d ions in solids, Chem. Rev., 104, 139–173; doi:  https://doi.org/10.1021/cr020357g.CrossRefGoogle Scholar
  3. 3.
    Wurth, C., Kaiser, M., Wilhelm, S., Grauel, B., Hirsch, T., and Resch-Genger, U. (2017) Excitation power dependent population pathways and absolute quantum yields of upconversion nanoparticles in different solvents, Nanoscale. Royal Soc. Chem., 9, 4283–4294; doi:  https://doi.org/10.1039/C7NR00092H.Google Scholar
  4. 4.
    Kuznetsova, Yu. Yu. (2013) Transfer of electron excitation in up-converting nanoparticles containing rare-earth ions, Izvest. Samarskogo Nauch. Tsentra RAN, 15, 112–115.Google Scholar
  5. 5.
    Chen, Y., and Liang, H. (2014) Applications of quantum dots with upconverting luminescence in bioimaging, J. Photochem. Photobiol. B Biol., 135, 23–32; doi:  https://doi.org/10.1016/j.jphotobiol.2014.04.003.CrossRefGoogle Scholar
  6. 6.
    Generalova, A. N., Chichkov, B. N., and Khaydukov, E. V. (2017) Multicomponent nanocrystals with anti-stokes luminescence as contrast agents for modern imaging techniques, Adv. Colloid Interface Sci., 245, 1–19; doi:  https://doi.org/10.1016/j.cis.2017.05.006.CrossRefGoogle Scholar
  7. 7.
    Fong, L. S. E., Chatterjee, D. K., and Zhang, Y. (2009) Use of upconverting nanoparticles in photodynamic therapy (URL: http://www.nus.edu.sg).Google Scholar
  8. 8.
    Wang, C., Tao, H., Cheng, L., and Liu, Z. (2011) Near-infrared light induced in vivo photodynamic therapy of cancer based on upconversion nanoparticles, Biomaterials, 32, 6145–6154; doi:  https://doi.org/10.1016/j.biomaterials.2011.05.007.CrossRefGoogle Scholar
  9. 9.
    Rocheva, V. V., Sholina, N. V., Derevyashkin, S. P., Generalova, A. N., Nechaev, A. V., Khochenkov, D. A., Semchishen, V. A., Khaidukov, E. V., Stepanova, E. V., and Panchenko, V. Ya. (2016) Luminescent diagnostics of tumors using up-conversion nanoparticles, Al’manakh Klin. Med., 44, 227–233; doi:  https://doi.org/10.18786/2072-0505-2016-44-2-227-233.CrossRefGoogle Scholar
  10. 10.
    Dougherty, T. J. (1992) Photochemistry in the treatment of cancer, Adv. Photochem., 17, 275–311.Google Scholar
  11. 11.
    Spiller, W., Kliesch, H., Wohrle, D., Hackbarth, S., Roder, B., and Schnurpfeil, G. (1998) Singlet oxygen quantum yields of different photosensitizers in polar solvents and micellar solutions, Porphyr. Phthalocyanines, 2, 145–158; doi:  https://doi.org/10.1002/(SICI)1099-1409(199803/04)2:2<145::AID-JPP60>3.0.CO;2-2.CrossRefGoogle Scholar
  12. 12.
    Ishii, K. (2012) Functional singlet oxygen generators based on phthalocyanines, Coord. Chem. Rev., 256, 1556–1568, doi:  https://doi.org/10.1016/j.ccr.2012.03.022.CrossRefGoogle Scholar
  13. 13.
    Taquet, J.-P., Frochot, C., Manneville, V., and Barberi-Heyob, M. (2007) Phthalocyanines covalently bound to biomolecules for a targeted photodynamic therapy, Curr. Med. Chem., 14, 1673–1687; doi:  https://doi.org/10.2174/092986707780830970.CrossRefGoogle Scholar
  14. 14.
    Cakir, D., Goksel, M., Cakir, V., Durmus, M., Biyiklioglu, Z., and Kantekin, H. (2015) Amphiphilic zinc phthalocyanine photosensitizers: synthesis, photophysicochemical properties and in vitro studies for photodynamic therapy, Dalt. Trans., 44, 9646–9658; doi:  https://doi.org/10.1039/C5DT00747J.CrossRefGoogle Scholar
  15. 15.
    Ribeiro, A. P. D., Andrade, M. C., Bagnato, V. S., Vergani, C. E., Primo, F. L., Tedesco, A. C., and Pavarina, A. C. (2015) Antimicrobial photodynamic therapy against pathogenic bacterial suspensions and biofilms using chloro-aluminum phthalocyanine encapsulated in nanoemulsions, Lasers Med. Sci., 30, 549–559; doi:  https://doi.org/10.1007/s10103-013-1354-x.CrossRefGoogle Scholar
  16. 16.
    Strakhovskaya, M. G., Antonenko, Yu. N., Pashkovskaya, A. A., Kotova, E. A., Kireev, V., Zhukhovitskii, V. G., Kuznetsova, N. A., Yuzhakova, O. A., Negrimovskii, V. M., and Rubin, A. B. (2009) Electrostatic binding of substituted metal phthalocyanines to enterobacteria cells: its role in photodynamic inactivation, Biochemistry (Moscow), 74, 1305–1314; doi:  https://doi.org/10.1134/S0006297909120025.CrossRefGoogle Scholar
  17. 17.
    Suchan, A., Nackiewicz, J., Hnatejko, Z., Waclawek, W., and Lis, S. (2009) Spectral studies of zinc octacarboxy-phthalocyanine aggregation, Dyes Pigments, 80, 239–244; doi:  https://doi.org/10.1016/j.dyepig.2008.06.009.CrossRefGoogle Scholar
  18. 18.
    Makarov, D. A., Kuznetsova, N. A., Yuzhakova, O. A., Savvina, L. P., Kaliya, O. L., Lukyanets, E. A., Negrimovskii, V. M., and Strakhovskaya, M. G. (2009) Effect of the degree of substitution on the physicochemical properties and photodynamic activity of zinc and aluminum phthalocyanine polycations, Russ. J. Phys. Chem. A, 83, 1044–1050; doi:  https://doi.org/10.1134/S0036024409060326.CrossRefGoogle Scholar
  19. 19.
    Mackenzie, L. E., Goode, J. A., Vakurov, A., Nampi, P. P., Saha, S., Jose, G., and Millner, P. A. (2018) The theoretical molecular weight of NaYF4:RE upconversion nanoparticles, Sci. Rep. Springer US, 8, 1–11; doi:  https://doi.org/10.1038/s41598-018-19415-w.Google Scholar
  20. 20.
    Kraljic, I., and Moshni, S. E. (1978) A new method for the detection of singlet oxygen in aqueous solutions, Photochem. Photobiol., 28, 577–581; doi:  https://doi.org/10.1111/j.1751-1097.1978.tb06972.x.CrossRefGoogle Scholar
  21. 21.
    Gvozdev, D. A., Maksimov, E. G., Strakhovskaya, M. G., Ivanov, M. V., Pashchenko, V. Z., and Rubin, A. B. (2017) The effect of ionic strength on spectral properties of quantum dots and aluminum phthalocyanines, Nanothech. Russ., 12, 73–85; doi:  https://doi.org/10.1134/S1995078017010050.CrossRefGoogle Scholar
  22. 22.
    Kadish, K. M., Smith, K. M., and Guilard, R. (2003) The Porphyrin Handbook. Vol. 17. Phthalocyanines: Properties and Materials, Academic Press, San Diego.Google Scholar
  23. 23.
    Goncalves, P. J., Correa, D. S., Franzen, P. L., De Boni, L., Almeida, L. M., Mendonca, C. R., Borissevitch, I. E., and Zilio, S. C. (2013) Effect of interaction with micelles on the excited-state optical properties of zinc porphyrins and J-aggregates formation, Spectrochim. Acta Part A Mol. Biomol. Spectrosc., 112, 309–317; doi:  https://doi.org/10.1016/j.saa.2013.04.065.CrossRefGoogle Scholar
  24. 24.
    Maiti, N. C., Mazumdar, S., and Periasamy, N. (1998) J- and H-aggregates of porphyrin-surfactant complexes: time-resolved fluorescence and other spectroscopic studies, J. Phys. Chem., 102, 1528–1538; doi:  https://doi.org/10.1021/jp9723372.CrossRefGoogle Scholar
  25. 25.
    Gandini, S. C. M., Yushmanov, V. E., Borissevitch, I. E., and Tabak, M. (1999) Interaction of the tetra(4-sulfonatophenyl)porphyrin with ionic surfactants: aggregation and location in micelles, Langmuir, 15, 6233–6243; doi:  https://doi.org/10.1021/la990108w.CrossRefGoogle Scholar
  26. 26.
    Bednarkiewicz, A., Nyk, M., Samoc, M., and Strek, W. (2010) Up-conversion FRET from Er3+/Yb3+: NaYF4 nanophosphor to CdSe quantum dots, J. Phys. Chem., 114, 17535–17541; doi:  https://doi.org/10.1021/jp106120d.Google Scholar
  27. 27.
    Watkins, Z., Uddin, I., Britton, J., and Nyokong, T. (2017) Characterization of conjugates of NaYF4:Yb,Er,Gd upconversion nanoparticle with aluminum phthalocyanines, J. Mol. Struct., 1130, 128–137; doi:  https://doi.org/10.1016/j.molstruc.2016.10.011.CrossRefGoogle Scholar
  28. 28.
    Lakowicz, J. R. (2006) Principles of Fluorescence Spectroscopy, 3rd Edn., Springer, New York.CrossRefGoogle Scholar
  29. 29.
    Su, Q., Feng, W., Yang, D., and Li, F. (2017) Resonance energy transfer in upconversion nanoplatforms for selective biodetection, Acc. Chem. Res., 50, 32–40; doi:  https://doi.org/10.1021/acs.accounts.6b00382.CrossRefGoogle Scholar
  30. 30.
    Drees, C., Raj, A. N., Kurre, R., Busch, K. B., Haase, M., and Piehler, J. (2016) Engineered upconversion nanoparticles for resolving protein interactions inside living cells, Angew. Chemie Int. Ed., 55, 11668–11672; doi:  https://doi.org/10.1002/anie.201603028.CrossRefGoogle Scholar
  31. 31.
    Resch-Genger, U., and Gorris, H. H. (2017) Perspectives and challenges of photon-upconversion nanoparticles. Part I: Routes to brighter particles and quantitative spectroscopic studies, Anal. Bioanal. Chem., 409, 5855–5874; doi:  https://doi.org/10.1007/s00216-017-0499-z.CrossRefGoogle Scholar
  32. 32.
    Komarala, V. K., Wang, Y., and Xiao, M. (2010) Nonlinear optical properties of Er3+/Yb3+-doped NaYF4 nanocrystals, Chem. Phys. Lett., 490, 189–193; doi:  https://doi.org/10.1016/j.cplett.2010.03.041.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • D. A. Gvozdev
    • 1
    Email author
  • E. P. Lukashev
    • 1
  • V. V. Gorokhov
    • 1
  • V. Z. Pashchenko
    • 1
  1. 1.Lomonosov Moscow State University, Faculty of BiologyMoscowRussia

Personalised recommendations