Advertisement

Biochemistry (Moscow)

, Volume 84, Issue 8, pp 851–869 | Cite as

RNA (C5-cytosine) Methyltransferases

  • S. A. KuznetsovaEmail author
  • K. S. Petrukov
  • F. I. Pletnev
  • P. V. Sergiev
  • O. A. Dontsova
Review

Abstract

The review summarizes the data on pro- and eukaryotic RNA (C5-cytosine) methyltransferases. The structure, intracellular location, RNA targets, and catalytic mechanisms of these enzymes, as well as the functional role of methylated cytosine residues in RNA are presented. The functions of RNA (C5-cytosine) methyltransferases unassociated with their methylation activity are discussed. Special attention is given to the similarities and differences in the structures and mechanisms of action of RNA and DNA methyltransferases. The data on the association of mutations in the RNA (C5-cytosine) methyltransferases genes and human diseases are presented.

Keywords

post-transcriptional modification of RNA RNA (C5-cytosine) methyltransferases 5-methylcytosine RNA methylation 

Abbreviations

m5C

5-methylcytosine

RNA-C5-methyltransferase

RNA (C5-cytosine) methyltransferase

SAM

S-adenosyl-L-methionine

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Funding. The work was supported by the Russian Science Foundation (project 17-75-30027) and Russian Foundation for Basic Research (project 17-00-00366).

Conflict of interest. The authors declare no conflict of interest.

Compliance of ethical norms. The article does not contain description of studies performed using humans or animals as subjects.

References

  1. 1.
    Boccaletto, P., Machnicka, M. A., Purta, E., Piatkowski, P., Baginski, B., Wirecki, T. K., de Crecy-Lagard, V., Ross, R., Limbach, P. A., Kotter, A., Helm, M., and Bujnicki, J. M. (2018) MODOMICS: a database of RNA modification pathways. 2017 update, Nucleic Acids Res., 46, 303–307, doi:  https://doi.org/10.1093/nar/gkx1030.CrossRefGoogle Scholar
  2. 2.
    Chen, Y., Sierzputowska-Gracz, H., Guenther, R., Everett, K., and Agris, P. (1993) 5-Methylcytidine is required for cooperative binding of Mg2+ and a conformational transition at the anticodon stem-loop of yeast phenylalanine tRNA, Biochemistry, 32, 10249–10253.CrossRefGoogle Scholar
  3. 3.
    Gowher, H., and Jeltsch, A. (2018) Mammalian DNA methyltransferases: new discoveries and open questions, Biochem. Soc. Trans., 46, 1191–1202, doi:  https://doi.org/10.1042/BST20170574.CrossRefGoogle Scholar
  4. 4.
    Trixl, L., and Lusser, A. (2019) The dynamic RNA modification 5-methylcytosine and its emerging role as an epitranscriptomic mark, Wiley Interdiscip. Rev. RNA, 10, e1510, doi:  https://doi.org/10.1002/wrna.1510.CrossRefGoogle Scholar
  5. 5.
    Bohnsack, K. E., Hobartner, K., and Bohnsack, M. T. (2019) Eucaryotic 5-methylcytosine (m5C) RNA methyltransferases: mechanisms, cellular functions, and links to disease, Genes, 10, 102, doi:  https://doi.org/10.3390/genes10020102.CrossRefGoogle Scholar
  6. 6.
    Schaefer, M., Pollex, T., Hanna, K., and Lyko, F. (2009) RNA cytosine methylation analysis by bisulfite sequencing, Nucleic Acids Res., 37, e12, doi:  https://doi.org/10.1093/nar/gkn954.CrossRefGoogle Scholar
  7. 7.
    Edelheit, S., Schwartz, S., Mumbach, M., Wurtzel, O., and Sorek, R. (2013) Transcriptome-wide mapping of 5-methylcytidine RNA modifications in bacteria, archaea, and yeast reveals m(5)C within archaeal mRNAs, PLoS Genet., 9, e1003602, doi:  https://doi.org/10.1371/journal.pgen.1003602.CrossRefGoogle Scholar
  8. 8.
    Khoddami, V., and Cairns, B. (2013) Identification of direct targets and modified bases of RNA cytosine methyltransferases, Nat Biotechnol., 31, 458–464, doi:  https://doi.org/10.1038/nbt.2566.CrossRefGoogle Scholar
  9. 9.
    George, H., Ule, J., and Hussain, S. (2017) Illustrating the epitranscriptome at nucleotide resolution using methylation-iCLIP (miCLIP), Methods Mol. Biol., 1562, 91–106, doi:  https://doi.org/10.1007/978-1-4939-6807-7_7.CrossRefGoogle Scholar
  10. 10.
    Squires, J., Patel, H., Nousch, M., Sibbritt, T., Humphreys, D., Parker, B. J., Suter, C. M., and Preiss, T. (2012) Widespread occurrence of 5-methylcytosine in human coding and non-coding RNA, Nucleic Acids Res., 40, 5023–2033, doi:  https://doi.org/10.1093/nar/gks144.CrossRefGoogle Scholar
  11. 11.
    Hoernes, T., Clementi, N., Faserl, K., Glasner, H., Breuker, K., and Lindner, H. (2016) Nucleotide modifications within bacterial messenger RNAs regulate their translation and are able to rewire the genetic code, Nucleic Acids Res., 44, 852–862, doi:  https://doi.org/10.1093/nar/gkv1182.CrossRefGoogle Scholar
  12. 12.
    Dominissini, D., Nachtergaele, S., Moshitch-Moshkovitz, S., Peer, E., Kol, N., Ben-Haim, M. S., Dai, Q, Di Segni, A., Salmon-Divon, M., Clark, W. C., Guanqun Zheng, G., Pan, T., Solomon, O., Eran Eyal, E., Hershkovitz, V., Han, D., Dore, L. C., Amariglio, N., Rechavi, G., and He, C. (2016) The dynamic N1-methyladenosine methylome in eukaryotic messenger RNA, Nature, 530, 441–446, doi:  https://doi.org/10.1038/nature16998.CrossRefGoogle Scholar
  13. 13.
    Amort, T., Rieder, D., Wille, A., Khokhlova-Cubberley, D., Riml, C., Trixl, L., Jia, X. Y., Micura, R., and Lusser, A. (2017) Distinct 5-methylcytosine profiles in poly(A) RNA from mouse embryonic stem cells and brain, Genome Biol., 18, 1, doi:  https://doi.org/10.1186/s13059-016-1139-1.CrossRefGoogle Scholar
  14. 14.
    Amort, T., Souliere, M., Wille, A., Jia, X., Fiegl, H., Worle, H., Micura, R., and Lusser, A. (2013) Long non-coding RNAs as targets for cytosine methylation, RNA Biol., 10, 1003–1008, doi:  https://doi.org/10.4161/rna.24454.CrossRefGoogle Scholar
  15. 15.
    Yang, X., Yang, Y., Sun, B., Chen, Y., Xu, J., Lai, W., Li, A., Wang, X., Bhattarai, D. P., Xiao, W., Sun, H.-Y., Zhu, Q., Hai-Li Ma, H.-L., Adhikari, S., Sun, M., Hao, Y.-J., Bing Zhang, B., Chun-Min Huang, C.-M., Huang, N., Jiang, G.-B., Zhao, Y.-L., Wang, H.-L., Sun, Y.-P., and Yang, Y.-G. (2017) 5-Methylcytosine promotes mRNA export — NSUN2 as the methyltransferase and ALYREF as an m5C reader, Cell Res., 27, 606–625, doi:  https://doi.org/10.1038/cr.2017.55.CrossRefGoogle Scholar
  16. 16.
    Reid, R., Greene, P., and Santi, D. (1999) Exposition of a family of RNA m(5)C methyltransferases from searching genomic and proteomic sequences, Nucleic Acids Res., 27, 3138–3145.CrossRefGoogle Scholar
  17. 17.
    Walbott, H., Husson, C., Auxilien, S., and Golinelli-Pimpaneau, B. (2007) Cysteine of sequence motif VI is essential for nucleophilic catalysis by yeast tRNA m5C methyltransferase, RNA, 13, 967–973, doi:  https://doi.org/10.1261/rna.515707.CrossRefGoogle Scholar
  18. 18.
    Liu, Y., and Santi, D. (2000) m5C RNA and m5C DNA methyltransferases use different cysteine residues as catalysts, Proc. Natl. Acad. Sci. USA, 97, 8263–8265.CrossRefGoogle Scholar
  19. 19.
    Zhang, X., and Bruice, T. (2006) The mechanism of M.HhaI DNA C5 cytosine methyltransferase enzyme: a quantum mechanics/molecular mechanics approach, Proc. Natl. Acad. Sci. USA, 103, 6148–6153, doi:  https://doi.org/10.1073/pnas.0601587103.CrossRefGoogle Scholar
  20. 20.
    Gu, X., Gustafsson, C., Ku, J., Yu, M., and Santi, D. (1999) Identification of the 16S rRNA m5C967 methyltransferase from Escherichia coli, Biochemistry, 38, 4053–4057, doi:  https://doi.org/10.1021/bi982364y.CrossRefGoogle Scholar
  21. 21.
    Lesnyak, D. V., Osipiuk, J., Skarina, T., Sergiev, P. V., Bogdanov, A. A., Edwards, A., Savchenko, A., Joachimiak, A., and Dontsova, O. A. (2007) Methyltransferase that modifies guanine 966 of the 16S rRNA: functional identification and tertiary structure, J. Biol. Chem., 282, 5880–5887, doi:  https://doi.org/10.1074/jbc.M608214200.CrossRefGoogle Scholar
  22. 22.
    Tscherne, J., Nurse, K., Popienick, P., Michel, H., Sochacki, M., and Ofengand, J. (1999) Purification, cloning, and characterization of the 16S RNA m5C967 methyltransferase from Escherichia coli, Biochemistry, 38, 1884–1892, doi: https://doi.org/10.1021/bi981880l.CrossRefGoogle Scholar
  23. 23.
    Weitzmann, C., Tumminia, S., Boublik, M., and Ofengand, J. (1991) A paradigm for local conformational control of function in the ribosome: binding of ribosomal protein S19 to Escherichia coli 16S rRNA in the presence of S7 is required for methylation of m2G966 and blocks methylation of m5C967 by their respective methyltransferases, Nucleic Acids Res., 19, 7089–7095.CrossRefGoogle Scholar
  24. 24.
    Foster, P., Nunes, C., Greene, P., Moustakas, D., and Stroud, R. (2003) The first structure of an RNA m5C methyltransferase, Fmu, provides insight into catalytic mechanism and specific binding of RNA substrate, Structure, 11, 1609–1620, doi:  https://doi.org/10.1016/j.str.2003.10.014.CrossRefGoogle Scholar
  25. 25.
    Burakovsky, D., Prokhorova, I., Sergiev, P., and Milon, P. (2012) Impact of methylations of m2G966/m5C967 in 16S rRNA on bacterial fitness and translation initiation, Nucleic Acids Res., 40, 7885–7895, doi:  https://doi.org/10.1093/nar/gks508.CrossRefGoogle Scholar
  26. 26.
    Prokhorova, I., Osterman, I., Burakovsky, D., and Serebryakova, M. (2013) Modified nucleotides m2G966/m5C967 of Escherichia coli 16S rRNA are required for attenuation of tryptophan operon, Sci. Rep., 3, 3236, doi:  https://doi.org/10.1038/srep03236.CrossRefGoogle Scholar
  27. 27.
    Andersen, N., and Douthwaite, S. (2006) YebU is a m5C methyltransferase specific for 16S rRNA nucleotide 1407, J. Mol. Biol., 359, 777–786, doi:  https://doi.org/10.1016/j.jmb.2006.04.007.CrossRefGoogle Scholar
  28. 28.
    Hallberg, B., Ericsson, U., Johnson, K., Andersen, N., Douthwaite, S., Nordlund, P., Beuscher, A. E., and Erlandsen, H. (2006) The structure of the RNA m5C methyltransferase YebU from Escherichia coli reveals a C-terminal RNA-recruiting PUA domain, J. Mol. Biol., 360, 774–787, doi:  https://doi.org/10.1016/j.jmb.2006.05.047.CrossRefGoogle Scholar
  29. 29.
    Purta, E., O’Connor, M., Bujnicki, J., and Douthwaite, S. (2008) YccW is the m5C methyltransferase specific for 23S rRNA nucleotide 1962, J. Mol. Biol., 383, 641–651, doi:  https://doi.org/10.1016/j.jmb.2008.08.061.CrossRefGoogle Scholar
  30. 30.
    Sunita, S., Tkaczuk, K., Purta, E., Kasprzak, J., Douthwaite, S., Bujnicki, J., and Sivaraman, J. (2008) Crystal structure of the Escherichia coli 23S rRNA:m5C methyltransferase RlmI (YccW) reveals evolutionary links between RNA modification enzymes, J. Mol. Biol., 383, 652–666, doi:  https://doi.org/10.1016/j.jmb.2008.08.062.CrossRefGoogle Scholar
  31. 31.
    Rodriguez, V., Vasudevan, S., Noma, A., Carlson, B., Green, J., Suzuki, T, and Chandrasekharappa, S. C. (2012) Structure-function analysis of human TYW2 enzyme required for the biosynthesis of a highly modified wybutosine (yW) base in phenylalanine-tRNA, PLoS One, 7, e39297, doi:  https://doi.org/10.1371/journal.pone.0039297.CrossRefGoogle Scholar
  32. 32.
    Jurkowski, T., and Jeltsch, A. (2011) On the evolutionary origin of eukaryotic DNA methyltransferases and Dnmt2, PLoS One, 6, e28104, doi:  https://doi.org/10.1371/journal.pone.0028104.CrossRefGoogle Scholar
  33. 33.
    Goll, M., Kirpekar, F., Maggert, K., Yoder, J., Hsieh, C., Zhang, X., Golic, K., Jacobsen, S., and Bestor, T. (2006) Methylation of tRNAAsp by the DNA methyltransferase homolog Dnmt2, Science, 311, 395–398, doi:  https://doi.org/10.1371/journal.pone.0028104.CrossRefGoogle Scholar
  34. 34.
    Shanmugam, R., Aklujkar, M., Schafer, M., Reinhardt, R., Nickel, O., Reuter, G., Lovley, D. R., Ehrenhofer-Murray, A., Nellen, W., Ankri, S., Helm, M., Jurkowski, T. P., and Jeltsch, A. (2014) The Dnmt2 RNA methyltransferase homolog of Geobacter sulfurreducens specifically methylates tRNA-Glu, Nucleic Acids Res., 42, 6487–6496, doi:  https://doi.org/10.1093/nar/gku256.CrossRefGoogle Scholar
  35. 35.
    Schaefer, M., Pollex, T., Hanna, K., Tuorto, F., Meusburger, M., Helm, M., and Lyko, F. (2010) RNA methylation by Dnmt2 protects transfer RNAs against stress-induced cleavage, Genes Dev., 24, 1590–1595, doi:  https://doi.org/10.1101/gad.586710.CrossRefGoogle Scholar
  36. 36.
    Haussecker, D., Huang, Y., Lau, A., Parameswaran, P., Fire, A., and Kay, M. (2010) Human tRNA-derived small RNAs in the global regulation of RNA silencing, RNA, 16, 673–695, doi:  https://doi.org/10.1261/rna.2000810.CrossRefGoogle Scholar
  37. 37.
    Shanmugam, R., Fierer, J., Kaiser, S., Helm, M., Jurkowski, T., and Jeltsch, A. (2015) Cytosine methylation of tRNA-Asp by DNMT2 has a role in translation of proteins containing poly-Asp sequences, Cell Discov., 1, 15010, doi:  https://doi.org/10.1038/celldisc.2015.10.CrossRefGoogle Scholar
  38. 38.
    Zaborske, J., Vanessa, L., DuMont, B., Wallace, E., Pan, T., Aquadro, C., and Drummond, A. (2014) A nutrient-driven tRNA modification alters translational fidelity and genome-wide protein coding across an animal genus, PLoS Biol., 12, e1002015, doi:  https://doi.org/10.1371/journal.pbio.1002015.CrossRefGoogle Scholar
  39. 39.
    Muller, M., Hartmann, M., Schuster, I., Bender, S., Thuring, K., Helm, M., Katze, J., Nellen, W., Lyko, F., and Ehrenhofer-Murray, A. (2015) Dynamic modulation of Dnmt2-dependent tRNA methylation by the micronutrient queuine, Nucleic Acids Res., 43, 10952–10962, doi:  https://doi.org/10.1093/nar/gkv980.CrossRefGoogle Scholar
  40. 40.
    Schaefer, M., Steringer, J., and Lyko, F. (2008) The Drosophila cytosine-5 methyltransferase Dnmt2 is associated with the nuclear matrix and can access DNA during mitosis, PloS One, 3, e1414, doi:  https://doi.org/10.1371/journal.pone.0001414.CrossRefGoogle Scholar
  41. 41.
    Lin, M., Tang, L., Reddy, M., and Shen, C. (2005) DNA methyltransferase gene dDnmt2 and longevity of Drosophila, J. Biol. Chem., 280, 861–864, doi:  https://doi.org/10.1074/jbc.C400477200.CrossRefGoogle Scholar
  42. 42.
    Forbes, S., Beare, D., Gunasekaran, P., Leung, K., Bindal, N., Boutselakis, H., Ding, M., Bamford, S., Cole, C., Ward, S., Kok, C. Y., Jia, M., De, T., Teague, J. W., Stratton, M. R., McDermott, U., and Campbell, P. J. (2015) COSMIC: exploring the world’s knowledge of somatic mutations in human cancer, Nucleic Acids Res., 43, 805–811, doi:  https://doi.org/10.1093/nar/gku1075.CrossRefGoogle Scholar
  43. 43.
    Chen, Q., Yan, M., Cao, Z., Li, X., Zhang, Y., Shi, J., Feng, G., Peng, H., Zhang, X., Zhang, Y., Qian, J., Duan, E., Zhai, Q., and Zhou, Q. (2016) Sperm tsRNAs contribute to intergenerational inheritance of an acquired metabolic disorder, Science, 351, 397–400, doi:  https://doi.org/10.1126/science.aad7977.CrossRefGoogle Scholar
  44. 44.
    Sardana, R., and Johnson, A. (2012) The methyltransferase adaptor protein Trm112 is involved in biogenesis of both ribosomal subunits, Mol. Biol. Cell., 23, 4313–4322, doi:  https://doi.org/10.1091/mbc.E12-05-0370.CrossRefGoogle Scholar
  45. 45.
    Vasilieva, E. N., Laptev, I. G., Sergiev, P. V., and Dontsova, O. A. (2018) The common partners of several methyltransferases modifying components of the eukaryotic translation apparatus, Mol. Biol. (Moscow), 52, 975–983, doi:  https://doi.org/10.1134/S0026898418060174.CrossRefGoogle Scholar
  46. 46.
    Sharma, S., Yang, J., Watzinger, P., Kotter, P., and Entian, K. (2013) Yeast Nop2 and Rcm1 methylate C2870 and C2278 of the 25S rRNA, respectively, Nucleic Acids Res., 41, 9062–9076, doi:  https://doi.org/10.1093/nar/gkt679.CrossRefGoogle Scholar
  47. 47.
    Gustafson, W., Taylor, C., Valdez, B., Henning, D., Phippard, A., Ren, Y., Busch, H., and Durban, E. (1998) Nucleolar protein p120 contains an arginine-rich domain that binds to ribosomal RNA, Biochem. J., 331, 387–393.CrossRefGoogle Scholar
  48. 48.
    Valdez, B. C., Perlaky, L., Henning, D., Saijo, Y., Chan, P. K., and Busch, H. (1994) Identification of the nuclear and nucleolar localization signals of the protein p120 interaction with translocation protein B23, J. Biol. Chem., 269, 23776–23783.Google Scholar
  49. 49.
    Bourgeois, G., Ney, M., Gaspar, I., Aigueperse, C., Schaefer, M., Kellner, S., Helm, M., and Motorin, Y. (2015) Eukaryotic rRNA modification by yeast 5-methyl-cytosine-methyltransferases and human proliferation-associated antigen p120, PLoS One, 10, e0133321, doi:  https://doi.org/10.1371/journal.pone.0133321.CrossRefGoogle Scholar
  50. 50.
    Hong, B., Brockenbrough, J., Wu, P., and Aris, P. (1997) Nop2p is required for pre-rRNA processing and 60S ribosome subunit synthesis in yeast, Mol. Cell. Biol., 17, 378–388.CrossRefGoogle Scholar
  51. 51.
    Fonagy, A., Swiderski, C., Wilson, A., Bolton, W., Kenyon, N., and Freeman, J. (1993) Cell cycle regulated expression of nucleolar antigen P120 in normal and transformed human fibroblasts, J. Cell. Physiol., 154, 16–27.CrossRefGoogle Scholar
  52. 52.
    Perlaky, L., Valdez, B., Busch, R., Larson, R., Jhiang, S., Zhang, W., Brattain, M., and Busch, H. (1992) Increased growth of NIH/3T3 cells by transfection with human p120 complementary DNA and inhibition by a p120 antisense construct, Cancer Res., 52, 428–436.Google Scholar
  53. 53.
    Fonagy, A., Swiderski, C., Ostrovsky, A., Bolton, W., and Freeman, J. (1994) Effect of nucleolar p120 expression level on the proliferation capacity of breast cancer cells, Cancer Res., 54, 1859–1864.Google Scholar
  54. 54.
    Khanna-Gupta, A., Sun, H., Zibello, T., Lozovatsky, L., Ghosh, P., Link, D., McLemore, M., and Berliner, N. (2006) p120 nucleolar-proliferating antigen is a direct target of G-CSF signaling during myeloid differentiation, J. Leukoc. Biol., 79, 1011–1021, doi:  https://doi.org/10.1189/jlb.0205066.CrossRefGoogle Scholar
  55. 55.
    Kosi, N., Alic, I., Kolacevic, M., Vrsaljko, N., Jovanov, Milosevic, N., Sobol, M., and Mitrecic, D. (2015) Nop2 is expressed during proliferation of neural stem cells and in adult mouse and human brain, Brain Res., 1597, 65–76, doi:  https://doi.org/10.1016/j.brainres.CrossRefGoogle Scholar
  56. 56.
    Blanco, S., Dietmann, S., Flores, J. V., Hussain, S., Kutter, C., Humphreys, P., Lukk, M., Lombard, P., Treps, L., Popis, M., Kellner, S., Holter, S. M., Garrett, L., Wurst, W., Becker, L., Klopstock, T., Fuchs, H., Gailus-Durner, V., Hrabe de Angelis, M., Karadottir, R. T., Helm, M., Ule, J., Gleeson, J. G., Odom, D. T., and Frye, M. (2014) Aberrant methylation of tRNAs links cellular stress to neuro-developmental disorders, EMBO J., 33, 2020–2039, doi:  https://doi.org/10.15252/embj.201489282.CrossRefGoogle Scholar
  57. 57.
    Brzezicha, B., Schmidt, M., Makalowska, I., Jarmolowski, A., Pienkowska, J., and Szweykowska-Kulinska, Z. (2006) Identification of human tRNA:m5C methyltransferase catalyzing intron-dependent m5C formation in the first position of the anticodon of the pre-tRNALeu(CAA), Nucleic Acids Res., 34, 6034–6043, doi:  https://doi.org/10.1093/nar/gkl765.CrossRefGoogle Scholar
  58. 58.
    Ivanov, P., Emara, M., Villen, J., Steven, P., Gygi, S., and Anderson, P. (2011) Angiogenin-induced tRNA fragments inhibit translation initiation, Mol. Cell., 43, 613–623, doi:  https://doi.org/10.1016/j.molcel.2011.06.022.CrossRefGoogle Scholar
  59. 59.
    Wang, N., Tang, H., Wang, X., Wang, W., and Feng, J. (2017) Homocysteine upregulates interleukin-17A expression via NSun2-mediated RNA methylation in T lymphocytes, Biochem. Biophys. Res. Commun., 493, 94–99, doi:  https://doi.org/10.1016/j.bbrc.2017.09.069.CrossRefGoogle Scholar
  60. 60.
    Luo, Y., Feng, J., Xu, Q., Wang, W., and Wang, X. (2016) NSun2 deficiency protects endothelium from inflammation via mRNA methylation of ICAM-1, Circ. Res., 118, 944–956, doi:  https://doi.org/10.1161/CIRCRESAHA.115.307674.CrossRefGoogle Scholar
  61. 61.
    Tang, H., Fan, X., Xing, J., Liu, Z., Jiang, B., Dou, Y., Gorospe, M., and Wang, W. (2015) NSun2 delays replicative senescence by repressing p27 (KIP1) translation and elevating CDK1 translation, Aging, 7, 1143–1155, doi:  https://doi.org/10.18632/aging.100860.CrossRefGoogle Scholar
  62. 62.
    Zhang, X., Liu, Z., Yi, J., Tang, H., Xing, J., Yu, M., Tong, T., Shang, Y., Gorospe, M., and Wang, W. (2012) The tRNA methyltransferase NSun2 stabilizes p16INK4 mRNA by methylating the 3′-untranslated region of p16, Nat. Commun., 3, 712, doi:  https://doi.org/10.1038/ncomms1692.CrossRefGoogle Scholar
  63. 63.
    Khoddami, V., and Cairns, B. (2013) Identification of direct targets and modified bases of RNA cytosine methyltransferases, Nat. Biotechnol., 31, 458–464, doi:  https://doi.org/10.1038/nbt.2566.CrossRefGoogle Scholar
  64. 64.
    Berger, W., Steiner, E., Grusch, M., Elbling, L., and Micksche, M. (2009) Vaults and the major vault protein: novel roles in signal pathway regulation and immunity, Cell. Mol. Life Sci., 66, 43–61, doi:  https://doi.org/10.1007/s00018-008-8364-z.CrossRefGoogle Scholar
  65. 65.
    Hussain, S., Sajini, A., Blanco, S., Dietmann, S., Lombard, P., Sugimoto, Y., Paramor, M., Gleeson, J., Odom, D., Ule, J., and Frye, M. (2013) NSun2-mediated cytosine-5 methylation of vault non-coding RNA determines its processing into regulatory small RNAs, Cell Rep., 4, 255–261, doi:  https://doi.org/10.1016/j.celrep.2013.06.029.CrossRefGoogle Scholar
  66. 66.
    Hussain, S., Benavente, S. B., Nascimento, E., Dragoni, I., Kurowski, A., Gillich, A., Humphreys, P., and Frye, M. (2009) The nucleolar RNA methyltransferase Misu (NSun2) is required for mitotic spindle stability, J. Cell. Biol., 186, 27–40, doi:  https://doi.org/10.1083/jcb.200810180.CrossRefGoogle Scholar
  67. 67.
    Frye, M., and Watt, F. (2006) The RNA methyltransferase Misu (NSun2) mediates Myc-induced proliferation and is upregulated in tumors, Curr. Biol., 16, 971–981, doi:  https://doi.org/10.1016/j.cub.2006.04.027.CrossRefGoogle Scholar
  68. 68.
    Sakita-Suto, S., Kanda, A., Suzuki, F., Sato, S., Takata, T., and Tatsuka, M. (2007) Aurora B regulates RNA methyltransferase NSun2, Mol. Biol. Cell., 18, 1107–1117, doi:  https://doi.org/10.1091/mbc.E06-11-1021.CrossRefGoogle Scholar
  69. 69.
    Blanco, S., Kurowski, A., Nichols, J., Watt, F., Benitah, S., and Frye, M. (2011) The RNA-methyltransferase Misu (NSun2) poises epidermal stem cells to differentiate, PLoS Genet., 7, e1002403, doi:  https://doi.org/10.1371/journal.pgen.1002403.CrossRefGoogle Scholar
  70. 70.
    Hussain, S., Tuorto, F., Menon, S., Blanco, S., Cox, C., Flores, J., Watt, S., Kudo, N., Lyko, F., and Frye, M. (2013) The mouse cytosine-5 RNA methyltransferase NSun2 is a component of the chromatoid body and required for testis differentiation, Mol. Cell. Biol., 33, 1561–1570, doi:  https://doi.org/10.1128/MCB.01523-12.CrossRefGoogle Scholar
  71. 71.
    Yi, J., Gao, R., Chen, Y., Yang, Z., Han, P., Zhang, H., Dou, Y., Liu, W., Wang, W., Du, G., Xu, Y., and Wang, J. (2017) Overexpression of NSUN2 by DNA hypomethylation is associated with metastatic progression in human breast cancer, Oncotarget, 8, 20751–20765, doi:  https://doi.org/10.18632/oncotarget.10612.Google Scholar
  72. 72.
    Abbasi-Moheb, L., Mertel, S., Gonsior, M., Nouri-Vahid, L., Kahrizi, K., Cirak, S., Wieczorek, D., Motazacker, M., Esmaeeli-Nieh, S., Cremer, K., Weissmann, R., Tzschach, A., Garshasbi, M., Abedini, S., Najmabadi, H., Ropers, H., Sigrist, S., and Kuss, A. (2012) Mutations in NSUN2 cause autosomal-recessive intellectual disability, Am. J. Hum. Genet., 90, 847–855, doi:  https://doi.org/10.1016/j.ajhg.2012.03.021.CrossRefGoogle Scholar
  73. 73.
    Martinez, F., Lee, J., Lee, J., Blanco, S., Nickerson, E., Gabriel, S., Frye, M., Al-Gazali, L., and Gleeson, J. (2012) Whole exome sequencing identifies a splicing mutation in NSUN2 as a cause of a Dubowitz-like syndrome, J. Med. Genet., 49, 380–385, doi:  https://doi.org/10.1136/jmedgenet-2011-100686.CrossRefGoogle Scholar
  74. 74.
    Nakano, S., Suzuki, T., Kawarada, L., Iwata, H., Asano, K., and Suzuki, T. (2016) NSUN3 methylase initiates 5-formylcytidine biogenesis in human mitochondrial tRNAMet, Nat. Chem. Biol., 12, 546–551, doi:  https://doi.org/10.1038/nchembio.CrossRefGoogle Scholar
  75. 75.
    Cantara, W., Murphy, V., Demirci, H., and Agris, P. (2013) Expanded use of sense codons is regulated by modified cytidines in tRNA, Proc. Natl. Acad. Sci. USA, 110, 10964–10969, doi:  https://doi.org/10.1073/pnas.1222641110.CrossRefGoogle Scholar
  76. 76.
    Haag, S., Sloan, K., Ranjan, N., Warda, A., Kretschmer, J., Blessing, C., Hubner, B., Seikowski, J., Dennerlein, S., Rehling, P., Rodnina, M., Hobartner, C., and Bohnsack, M. (2016) NSUN3 and ABH1 modify the wobble position of mt-tRNAMet to expand codon recognition in mitochondrial translation, EMBO J., 35, 2104–2119, doi:  https://doi.org/10.15252/embj.201694885.CrossRefGoogle Scholar
  77. 77.
    Trixl, L., Amort, T., Wille, A., Zinni, M., Ebner, S., Hechenberger, C., Eichin, F., Gabriel, H., Schoberleitner, I., Huang, A., Piatti, P., Nat, R., Troppmair, J., and Lusser, A. (2018) RNA cytosine methyltransferase Nsun3 regulates embryonic stem cell differentiation by promoting mitochondrial activity, Cell. Mol. Life Sci., 75, 1483–1497, doi:  https://doi.org/10.1007/s00018-017-2700-0.CrossRefGoogle Scholar
  78. 78.
    Van Haute, L., Dietmann, S., Kremer, L., Hussain, S., Pearce, S., Powell, C., Rorbach, J., Lantaff, R., Blanco, S., Sauer, S., Kotzaeridou, U., Hoffmann, G., Memari, Y., Kolb-Kokocinski, A., Durbin, R., Mayr, J., Frye, M., Prokisch, H., and Minczuka, M. (2016) Deficient methylation and formylation of mt-tRNAMet wobble cytosine in a patient carrying mutations in NSUN3, Nat. Commun., 7, 12039, doi:  https://doi.org/10.1038/ncomms12039.CrossRefGoogle Scholar
  79. 79.
    Metodiev, M. D., Spahr, H., Loguercio Polosa, P., Meharg, C., Becker, C., Altmueller, J., Habermann, B., Larsson, N. G., and Ruzzenente, B. (2014) NSUN4 is a dual function mitochondrial protein required for both methylation of 12S rRNA and coordination of mitoribosomal assembly, PLoS Genet., 10, e1004110, doi:  https://doi.org/10.1371/journal.pgen.1004110.CrossRefGoogle Scholar
  80. 80.
    Yakubovskaya, E., Guja, K. E., Mejia, E., Castano, S., Hambardjieva, E., Choi, W. S., and Garcia-Diaz, M. (2012) Structure of the essential MTERF4:NSUN4 protein complex reveals how an MTERF protein collaborates to facilitate rRNA modification, Structure, 20, 1940–1947, doi:  https://doi.org/10.1016/j.str.2012.08.027.CrossRefGoogle Scholar
  81. 81.
    Spahr, H., Habermann, B., Gustafsson, C., Larsson, N., and Hallberg, B. (2012) Structure of the human MTERF4-NSUN4 protein complex that regulates mitochondrial ribosome biogenesis, Proc. Natl. Acad. Sci. USA, 109, 15253–15258, doi:  https://doi.org/10.1073/pnas.1210688109.CrossRefGoogle Scholar
  82. 82.
    Camara, Y., Asin-Cayuela, J., Park, C., Metodiev, M., Shi, Y., Ruzzenente, B., Kukat, C., Habermann, B., Wibom, R., Hultenby, K., Franz, T., Erdjument-Bromage, H., Tempst, P., Hallberg, M., Gustafsson, C. M., and Larsson, N.-G. (2011) MTERF4 regulates translation by targeting the methyltransferase NSUN4 to the mammalian mitochondrial ribosome, Cell. Metab., 13, 527–539, doi:  https://doi.org/10.1016/j.cmet.2011.04.002.CrossRefGoogle Scholar
  83. 83.
    Schosserer, M., Minois, N., Angerer, T. B., Amring, M., Dellago, H., Harreither, E., Calle-Perez, A., Pircher, A., Gerstl, M. P., Pfeifenberger, S., Brandl, C., Sonntagbauer, M., Kriegner, A., Linder, A., Weinhausel, A., Mohr, T., Steiger, M., Mattanovich, D., Rinnerthaler, M., Karl, T., Sharma, S., Entian, K. D., Kos, M., Breitenbach, M., Wilson, I. B., Polacek, N., Grillari-Voglauer, R., Breitenbach-Koller, L., and Grillari, J. (2015) Methylation of ribosomal RNA by NSUN5 is a conserved mechanism modulating organismal lifespan, Nat. Commun., 6, 6158, doi:  https://doi.org/10.1038/ncomms7158.CrossRefGoogle Scholar
  84. 84.
    Ramani, A. K., Li, Z., Hart, G. T., Carlson, M. W., Boutz, D. R., and Marcotte, E. M. (2008) A map of human protein interactions derived from co-expression of human mRNAs and their orthologs, Mol. Systems Biol., 4, 180, doi:  https://doi.org/10.1038/msb.2008.19.CrossRefGoogle Scholar
  85. 85.
    Haag, S., Warda, A., Kretschmer, J., Gunnigmann, M., Hobartner, C., and Bohnsack, M. (2015) NSUN6 is a human RNA methyltransferase that catalyzes formation of m5C72 in specific tRNAs, RNA, 21, 1532–1543, doi:  https://doi.org/10.1261/rna.051524.115.CrossRefGoogle Scholar
  86. 86.
    Long, T., Li, J., Li, H., Zhou, M., Zhou, X., Liu, R., and Wang, E. (2016) Sequence-specific and shape-selective RNA recognition by the human RNA 5-methylcytosine methyltransferase NSun6, J. Biol. Chem., 291, 24293–24303, doi:  https://doi.org/10.1074/jbc.M116.742569.CrossRefGoogle Scholar
  87. 87.
    Liu, R., Long, T., Li, J., Li, H., and Wang, E. (2017) Structural basis for substrate binding and catalytic mechanism of a human RNA:m5C methyltransferase NSun6, Nucleic Acids Res., 45, 6684–6697, doi:  https://doi.org/10.1093/nar/gkx473.CrossRefGoogle Scholar
  88. 88.
    Li, C., Wang, S., Xing, Z., Lin, A., Liang, K., Song, J., Hu, Q., Yao, J., Chen, Z., Park, P. K., Hawke, D. H., Zhou, J., Zhou, Y., Zhang, S., Liang, H., Hung, M. C., Gallick, G. E., Han, L., Lin, C., and Yang, L. (2017) A ROR1-HER3-LncRNA signaling axis modulates the Hippo-YAP pathway to regulate bone metastasis, Nat. Cell. Biol., 19, 106–119, doi:  https://doi.org/10.1038/ncb3464.CrossRefGoogle Scholar
  89. 89.
    Chalmel, F., Rolland, A. D., Niederhauser-Wiederkehr, C., Chung, S. S., Demougin, P., Gattiker, A., Moore, J., Patard, J. J., Wolgemuth, D. J., Jegou, B., and Primig, M. (2007) The conserved transcriptome in human and rodent male gametogenesis, Proc. Natl. Acad. Sci. USA, 104, 8346–8351, doi:  https://doi.org/10.1073/pnas.0701883104.CrossRefGoogle Scholar
  90. 90.
    Harris, T., Marquez, B., Suarez, S., and Schimenti, J. (2007) Sperm motility defects and infertility in male mice with a mutation in Nsun7, a member of the Sun domain-containing family of putative RNA methyltransferases, Biol. Reprod., 77, 376–382, doi:  https://doi.org/10.1095/biolreprod.106.058669.CrossRefGoogle Scholar
  91. 91.
    Khosronezhad, N., Colagar, A., and Mortazavi, S. (2015) The Nsun7 (A11337)-deletion mutation, causes reduction of its protein rate and associated with sperm motility defect in infertile men, J. Assist. Reprod. Genet., 32, 807–815, doi:  https://doi.org/10.1007/s10815-015-0443-0.CrossRefGoogle Scholar
  92. 92.
    Khosronejad, N., Colagar, A., and Jorsarayi, S. (2015) T26248G-transversion mutation in exon 7 of the putative methyltransferase Nsun7 gene causes a change in protein folding associated with reduced sperm motility in asthenospermic men, Reprod. Fertil. Dev., 27, 471–480, doi:  https://doi.org/10.1071/RD13371.CrossRefGoogle Scholar
  93. 93.
    Aguilo, F., Li, S., Balasubramaniyan, N., Sancho, A., Benko, S., Zhang, F., Vashisht, A., Rengasamy, M., Andino, B., Chen, C. H., Zhou, F., Qian, C., Zhou, M. M., Wohlschlegel, J. A., Zhang, W., Suchy, F. J., and Walsh, M. J. (2016) Deposition of 5-methylcytosine on enhancer RNAs enables the coactivator function of PGC-1α, Cell Rep., 14, 479–492, doi:  https://doi.org/10.1016/j.celrep.2015.12.043.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • S. A. Kuznetsova
    • 1
    Email author
  • K. S. Petrukov
    • 2
  • F. I. Pletnev
    • 2
    • 3
    • 4
  • P. V. Sergiev
    • 1
    • 2
    • 3
    • 5
  • O. A. Dontsova
    • 2
    • 3
    • 4
  1. 1.Lomonosov Moscow State University, Institute of Functional GenomicsMoscowRussia
  2. 2.Lomonosov Moscow State University, Faculty of ChemistryMoscowRussia
  3. 3.Skolkovo Institute of Science and TechnologySkolkovo, Moscow RegionRussia
  4. 4.Institute of Bioorganic ChemistryMoscowRussia
  5. 5.Petrov National Medical Research Center of OncologySt. PetersburgRussia

Personalised recommendations