Advertisement

Biochemistry (Moscow)

, Volume 84, Issue 8, pp 829–850 | Cite as

Mechanisms of Non-coenzyme Action of Thiamine: Protein Targets and Medical Significance

  • V. A. Aleshin
  • G. V. Mkrtchyan
  • V. I. BunikEmail author
Review
  • 2 Downloads

Abstract

Thiamine (vitamin B1) is a precursor of the well-known coenzyme of central metabolic pathways thiamine diphosphate (ThDP). Highly intense glucose oxidation in the brain requires ThDP-dependent enzymes, which determines the critical significance of thiamine for neuronal functions. However, thiamine can also act through the non-coenzyme mechanisms. The well-known facilitation of acetylcholinergic neurotransmission upon the thiamine and acetylcholine co-release into the synaptic cleft has been supported by the discovery of thiamine triphosphate (ThTP)-dependent phosphorylation of the acetylcholine receptor-associated protein rapsyn, and thiamine interaction with the TAS2R1 receptor, resulting in the activation of synaptic ion currents. The non-coenzyme regulatory binding of thiamine compounds has been demonstrated for the transcriptional regulator p53, poly(ADP-ribose) polymerase, prion protein PRNP, and a number of key metabolic enzymes that do not use ThDP as a coenzyme. The accumulated data indicate that the molecular mechanisms of the neurotropic action of thiamine are far broader than it has been originally believed, and closely linked to the metabolism of thiamine and its derivatives in animals. The significance of this topic has been illustrated by the recently established competition between thiamine and the antidiabetic drug metformin for common transporters, which can be the reason for the thiamine deficiency underlying metformin side effects. Here, we also discuss the medical implications of the research on thiamine, including the role of thiaminases in thiamine reutilization and biosynthesis of thiamine antagonists; molecular mechanisms of action of natural and synthetic thiamine antagonists, and biotransformation of pharmacological forms of thiamine. Given the wide medical application of thiamine and its synthetic forms, these aspects are of high importance for medicine and pharmacology, including the therapy of neurodegenerative diseases.

Keywords

metformin p53 serpin thiamine thiamine transport thiaminase vitamin B1 

Abbreviations

AThDP

adenylated thiamine diphosphate

AThTP

adenylated thiamine triphosphate

OGDHC

2-oxo-glutarate dehydrogenase complex

PARP

poly(ADP-ribose) polymerase

PDHC

pyruvate dehydrogenase complex

ThDP

thiamine diphosphate

ThDPase

thiamine diphosphatase

ThMP

thiamine monophosphate

ThMPase

thiamine monophosphatase

ThTP

thiamine triphosphate

ThTPase

thiamine triphosphatase

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Funding. This work is supported by the Russian Foundation for Basic Research (grant no. 18-34-00235).

Conflict of interest. The authors declare no conflict of interest.

Ethical statement. This paper does not describe non-published studies of the authors performed with human or animal subjects.

References

  1. 1.
    Stepuro, I. I., Oparin, A. Y., Stsiapura, V. I., Maskevich, S. A., and Titov, V. Y. (2012) Oxidation of thiamine on reaction with nitrogen dioxide generated by ferric myoglobin and hemoglobin in the presence of nitrite and hydrogen peroxide, Biochemistry (Moscow), 77, 41–55, doi:  https://doi.org/10.1134/S0006297912010051.CrossRefGoogle Scholar
  2. 2.
    Parkhomenko, Y. M., Donchenko, G. V., Chehovskaya, L. I., Stepanenko, S. P., Mejenskaya, O. A., and Gorban, E. N. (2015) Metovitan prevents accumulation of thiamin diphosphate oxygenized form in rat tissues under irradiation, Biotechnol. Acta, 8, 63–70, doi:  https://doi.org/10.15407/biotech8.04.063.Google Scholar
  3. 3.
    Coy, J. F., Dressler, D., Wilde, J., and Schubert, P. (2005) Mutations in the transketolase-like gene TKTL1: clinical implications for neurodegenerative diseases, diabetes and cancer, Clin. Lab., 51, 257–273.PubMedGoogle Scholar
  4. 4.
    Langbein, S., Zerilli, M., Zur Hausen, A., Staiger, W., Rensch-Boschert, K., Lukan, N., Popa, J., Ternullo, M. P., Steidler, A., Weiss, C., Grobholz, R., Willeke, F., Alken, P., Stassi, G., Schubert, P., and Coy, J. F. (2006) Expression of transketolase TKTL1 predicts colon and urothelial cancer patient survival: Warburg effect reinterpreted, Br. J. Cancer, 94, 578–585, doi:  https://doi.org/10.1038/sj.bjc.6602962.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Meshalkina, L. E., Drutsa, V. L., Koroleva, O. N., Solovjeva, O. N., and Kochetov, G. A. (2013) Is transketolase-like protein, TKTL1, transketolase? Biochim. Biophys. Acta, 1832, 387–390, doi:  https://doi.org/10.1016/j.bbadis.2012.12.004.CrossRefPubMedGoogle Scholar
  6. 6.
    Bunik, V. (2017) Vitamin-Dependent Multienzyme Complexes of 2-Oxo Acid Dehydrogenases: Structure, Function, Regulation and Medical Implications, Nova Science Publishers, NY.Google Scholar
  7. 7.
    Bunik, V. I., Tylicki, A., and Lukashev, N. V. (2013) Thiamin diphosphate-dependent enzymes: from enzymology to metabolic regulation, drug design and disease models, FEBS J., 280, 6412–6442, doi:  https://doi.org/10.1111/febs.12512.CrossRefPubMedGoogle Scholar
  8. 8.
    Bunik, V. I., Denton, T. T., Xu, H., Thompson, C. M., Cooper, A. J., and Gibson, G. E. (2005) Phosphonate analogues of a-ketoglutarate inhibit the activity of the α-keto-glutarate dehydrogenase complex isolated from brain and in cultured cells, Biochemistry, 44, 10552–10561, doi:  https://doi.org/10.1021/bi0503100.CrossRefPubMedGoogle Scholar
  9. 9.
    Liu, D., Ke, Z., and Luo, J. (2017) Thiamine deficiency and neurodegeneration: the interplay among oxidative stress, endoplasmic reticulum stress, and autophagy, Mol. Neurobiol., 54, 5440–5448, doi:  https://doi.org/10.1007/s12035-016-0079-9.CrossRefPubMedGoogle Scholar
  10. 10.
    Bunik, V. I., and Aleshin, V. A. (2017) Analysis of the protein binding sites for thiamin and its derivatives to elucidate the molecular mechanisms of the noncoenzyme action of thiamin (vitamin B1), Studies Nat. Prod. Chem., 53, 375–429, doi:  https://doi.org/10.1016/b978-0-444-63930-1.00011-9.CrossRefGoogle Scholar
  11. 11.
    Bunik, V. I. (2014) Benefits of thiamin (vitamin B1) administration in neurodegenerative diseases may be due to both the coenzyme and non-coenzyme roles of thiamin, J. Alzheimers Dis. Parkinsonism, 4, 173, doi:  https://doi.org/10.4172/2161-0460.1000173.CrossRefGoogle Scholar
  12. 12.
    Gibson, G. E., Blass, J. P., Beal, M. F., and Bunik, V. (2005) The α-ketoglutarate-dehydrogenase complex: a mediator between mitochondria and oxidative stress in neurodegeneration, Mol. Neurobiol., 31, 43–63, doi:  https://doi.org/10.1385/MN:31:1-3:043.CrossRefPubMedGoogle Scholar
  13. 13.
    Costantini, A., Giorgi, R., D’Agostino, S., and Pala, M. I. (2013) High-dose thiamine improves the symptoms of Friedreich’s ataxia, BMJ Case Rep., 2013, bcr2013009424, doi:  https://doi.org/10.1136/bcr-2013-009424.PubMedPubMedCentralGoogle Scholar
  14. 14.
    Costantini, A., and Fancellu, R. (2016) An open-label pilot study with high-dose thiamine in Parkinson’s disease, Neural Regen. Res., 11, 406–407, doi:  https://doi.org/10.4103/1673-5374.179047.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Snodgrass, S. R. (1992) Vitamin neurotoxicity, Mol. Neurobiol., 6, 41–73, doi:  https://doi.org/10.1007/bf02935566.CrossRefPubMedGoogle Scholar
  16. 16.
    Lonsdale, D. (2006) A review of the biochemistry, metabolism and clinical benefits of thiamin(e) and its derivatives, Evid. Based Complement Alternat. Med., 3, 49–59, doi:  https://doi.org/10.1093/ecam/nek009.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Pan, X., Gong, N., Zhao, J., Yu, Z., Gu, F., Chen, J., Sun, X., Zhao, L., Yu, M., Xu, Z., Dong, W., Qin, Y., Fei, G., Zhong, C., and Xu, T. L. (2010) Powerful beneficial effects of benfotiamine on cognitive impairment and β-amyloid deposition in amyloid precursor protein/presenilin-1 transgenic mice, Brain, 133, 1342–1351, doi:  https://doi.org/10.1093/brain/awq069.CrossRefPubMedGoogle Scholar
  18. 18.
    Bettendorff, L., and Wins, P. (1999) Thiamine derivatives in excitable tissues: metabolism, deficiency and neurodegenerative diseases, Rec. Res. Devel. Neurochem., 2, 37–62.Google Scholar
  19. 19.
    Gangolf, M., Czerniecki, J., Radermecker, M., Detry, O., Nisolle, M., Jouan, C., Martin, D., Chantraine, F., Lakaye, B., Wins, P., Grisar, T., and Bettendorff, L. (2010) Thiamine status in humans and content of phosphorylated thiamine derivatives in biopsies and cultured cells, PLoS One, 5, e13616, doi:  https://doi.org/10.1371/journal.pone.0013616.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Frederich, M., Delvaux, D., Gigliobianco, T., Gangolf, M., Dive, G., Mazzucchelli, G., Elias, B., De Pauw, E., Angenot, L., Wins, P., and Bettendorff, L. (2009) Thiaminylated adenine nucleotides. Chemical synthesis, structural characterization and natural occurrence, FEBS J., 276, 3256–3268, doi:  https://doi.org/10.1111/j.1742-4658.2009.07040.x.CrossRefPubMedGoogle Scholar
  21. 21.
    Bocobza, S. E., Malitsky, S., Araujo, W. L., Nunes-Nesi, A., Meir, S., Shapira, M., Fernie, A. R., and Aharoni, A. (2013) Orchestration of thiamin biosynthesis and central metabolism by combined action of the thiamin pyrophosphate riboswitch and the circadian clock in Arabidopsis, Plant Cell, 25, 288–307, doi:  https://doi.org/10.1105/tpc.112.106385.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Kim, S., Rhee, J. K., Yoo, H. J., Lee, H. J., Lee, E. J., Lee, J. W., Yu, J. H., Son, B. H., Gong, G., Kim, S. B., Singh, S. R., Ahn, S. H., and Chang, S. (2015) Bioinformatic and metabolomic analysis reveals miR-155 regulates thiamine level in breast cancer, Cancer Lett., 357, 488–497, doi:  https://doi.org/10.1016/j.canlet.2014.11.058.CrossRefPubMedGoogle Scholar
  23. 23.
    McLure, K. G., Takagi, M., and Kastan, M. B. (2004) NAD+ modulates p53 DNA binding specificity and function, Mol. Cell Biol., 24, 9958–9967, doi: 10.1128/MCB.24.22.9958-9967.2004.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Lo, P. K., Chen, J. Y., Tang, P. P., Lin, J., Lin, C. H., Su, L. T., Wu, C. H., Chen, T. L., Yang, Y., and Wang, F. F. (2001) Identification of a mouse thiamine transporter gene as a direct transcriptional target for p53, J. Biol. Chem., 276, 37186–37193, doi:  https://doi.org/10.1074/jbc.M104701200.CrossRefPubMedGoogle Scholar
  25. 25.
    Cooper, J. R., Itokawa, Y., and Pincus, J. H. (1969) Thiamine triphosphate deficiency in subacute necrotizing encephalomyelopathy, Science, 164, 74–75, doi:  https://doi.org/10.1126/science.164.3875.74.CrossRefPubMedGoogle Scholar
  26. 26.
    Pincus, J. H., Solitare, G. B., and Cooper, J. R. (1976) Thiamine triphosphate levels and histopathology. Correlation in Leigh disease, Arch. Neurol., 33, 759–763, doi:  https://doi.org/10.1001/archneur.1976.00500110027005.CrossRefPubMedGoogle Scholar
  27. 27.
    Gigliobianco, T., Lakaye, B., Makarchikov, A. F., Wins, P., and Bettendorff, L. (2008) Adenylate kinase-independent thiamine triphosphate accumulation under severe energy stress in Escherichia coli, BMC Microbiol., 8, 16, doi:  https://doi.org/10.1186/1471-2180-8-16.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Nghiem, H. O., Bettendorff, L., and Changeux, J. P. (2000) Specific phosphorylation of Torpedo 43K rapsyn by endogenous kinase(s) with thiamine triphosphate as the phosphate donor, FASEB J., 14, 543–554, doi:  https://doi.org/10.1096/fasebj.14.3.543.CrossRefPubMedGoogle Scholar
  29. 29.
    Von Muralt, A. (1958) The role of thiamine (vitamin B1) in nerve excitation, Exp. Cell Res., 14, 72–79.PubMedGoogle Scholar
  30. 30.
    Minz, B. (1938) Sur la liberation de la vitamine B1 par le trone isole de nerf pneumogastrique soumis a l’exitation electrique, C. R. Soc. Biol., 127, 1251–1253.Google Scholar
  31. 31.
    Itokawa, Y., and Cooper, J. R. (1970) Ion movements and thiamine. II. The release of the vitamin from membrane fragments, Biochim. Biophys. Acta, 196, 274–284, doi:  https://doi.org/10.1016/0005-2736(70)90015-5.CrossRefPubMedGoogle Scholar
  32. 32.
    Tanaka, T., Yamamoto, D., Sato, T., Tanaka, S., Usui, K., Manabe, M., Aoki, Y., Iwashima, Y., Saito, Y., Mino, Y., and Deguchi, H. (2011) Adenosine thiamine triphosphate (AThTP) inhibits poly(ADP-ribose) polymerase-1 (PARP-1) activity, J. Nutr. Sci. Vitaminol. (Tokyo), 57, 192–196, doi:  https://doi.org/10.3177/jnsv.57.192.CrossRefGoogle Scholar
  33. 33.
    Mkrtchyan, G., Aleshin, V., Parkhomenko, Y., Kaehne, T., Di Salvo, M. L., Parroni, A., Contestabile, R., Vovk, A., Bettendorff, L., and Bunik, V. (2015) Molecular mechanisms of the non-coenzyme action of thiamin in brain: biochemical, structural and pathway analysis, Sci. Rep., 5, 12583, doi:  https://doi.org/10.1038/srep12583.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Rindi, G., Patrini, C., Nauti, A., Bellazzi, R., and Magni, P. (2003) Three thiamine analogues differently alter thiamine transport and metabolism in nervous tissue: an in vivo kinetic study using rats, Metab. Brain Dis., 18, 245–263, doi:  https://doi.org/10.1023/B:MEBR.0000020187.98238.58.CrossRefPubMedGoogle Scholar
  35. 35.
    Matsuda, T., Tonomura, H., Baba, A., and Iwata, H. (1989) Tissue difference in cellular localization of thiamine phosphate esters, Comp. Biochem. Physiol. B, 94, 405–409, doi:  https://doi.org/10.1016/0305-0491(89)90364-7.CrossRefPubMedGoogle Scholar
  36. 36.
    Bettendorff, L., Wins, P., and Lesourd, M. (1994) Subcellular localization and compartmentation of thiamine derivatives in rat brain, Biochim. Biophys. Acta, 1222, 1–6, doi:  https://doi.org/10.1016/0167-4889(94)90018-3.CrossRefPubMedGoogle Scholar
  37. 37.
    Gangolf, M., Wins, P., Thiry, M., El Moualij, B., and Bettendorff, L. (2010) Thiamine triphosphate synthesis in rat brain occurs in mitochondria and is coupled to the respiratory chain, J. Biol. Chem., 285, 583–594, doi:  https://doi.org/10.1074/jbc.M109.054379.CrossRefPubMedGoogle Scholar
  38. 38.
    Mayr, J. A., Freisinger, P., Schlachter, K., Rolinski, B., Zimmermann, F. A., Scheffner, T., Haack, T. B., Koch, J., Ahting, U., Prokisch, H., and Sperl, W. (2011) Thiamine pyrophosphokinase deficiency in encephalopathic children with defects in the pyruvate oxidation pathway, Am. J. Hum. Genet., 89, 806–812, doi:  https://doi.org/10.1016/j.ajhg.2011.11.007.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Banka, S., de Goede, C., Yue, W. W., Morris, A. A., von Bremen, B., Chandler, K. E., Feichtinger, R. G., Hart, C., Khan, N., Lunzer, V., Matakovic, L., Marquardt, T., Makowski, C., Prokisch, H., Debus, O., Nosaka, K., Sonwalkar, H., Zimmermann, F. A., Sperl, W., and Mayr, J. A. (2014) Expanding the clinical and molecular spectrum of thiamine pyrophosphokinase deficiency: a treatable neurological disorder caused by TPK1 mutations, Mol. Genet. Metab., 113, 301–306, doi:  https://doi.org/10.1016/j.ymgme.2014.09.010.CrossRefPubMedGoogle Scholar
  40. 40.
    Sano, S., Matsuda, Y., Miyamoto, S., and Nakagawa, H. (1984) Thiamine pyrophosphatase and nucleoside diphosphatase in rat brain, Biochem. Biophys. Res. Commun., 118, 292–298, doi:  https://doi.org/10.1016/0006-291X(84)91099-4.CrossRefPubMedGoogle Scholar
  41. 41.
    Zebisch, M., Schafer, P., Lauble, P., and Strater, N. (2013) New crystal forms of NTPDase 1 from the bacterium Legionella pneumophila, Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun., 69, 257–262, doi:  https://doi.org/10.1107/S1744309113001504.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Rindi, G., Ricci, V., Gastaldi, G., and Patrini, C. (1995) Intestinal alkaline phosphatase can transphosphorylate thiamin to thiamin monophosphate during intestinal transport in the rat, Arch. Physiol. Biochem., 103, 33–38, doi:  https://doi.org/10.3109/13813459509007560.CrossRefPubMedGoogle Scholar
  43. 43.
    Zylka, M. J., Sowa, N. A., Taylor-Blake, B., Twomey, M. A., Herrala, A., Voikar, V., and Vihko, P. (2008) Prostatic acid phosphatase is an ectonucleotidase and suppresses pain by generating adenosine, Neuron, 60, 111–122, doi:  https://doi.org/10.1016/j.neuron.2008.08.024.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Hurt, J. K., Coleman, J. L., Fitzpatrick, B. J., Taylor-Blake, B., Bridges, A. S., Vihko, P., and Zylka, M. J. (2012) Prostatic acid phosphatase is required for the antinociceptive effects of thiamine and benfotiamine, PLoS One, 7, e48562, doi:  https://doi.org/10.1371/journal.pone.0048562.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Eckert, T., and Moebus, W. (1964) On the ATP thiaminediphosphate phosphotransferase activity in nerve tissue. A contribution on the mechanism of nerve impulse conduction, Hoppe Seylers’ Z. Physiol. Chem., 338, 286–288.CrossRefGoogle Scholar
  46. 46.
    Nishino, K., Itokawa, Y., Nishino, N., Piros, K., and Cooper, J. R. (1983) Enzyme system involved in the synthesis of thiamin triphosphate. I. Purification and characterization of protein-bound thiamin diphosphate:ATP phosphoryltransferase, J. Biol. Chem., 258, 11871–11878.PubMedGoogle Scholar
  47. 47.
    Shioda, T., Yasuda, S., Yamada, K., Yamada, M., Nakazawa, A., and Kawasaki, T. (1993) Thiamin-triphosphate-synthesizing activity of mutant cytosolic adenylate kinases: significance of Arg-128 for substrate specificity, Biochim. Biophys. Acta, 1161, 230–234, doi:  https://doi.org/10.1016/0167-4838(93)90218-G.CrossRefPubMedGoogle Scholar
  48. 48.
    Makarchikov, A. F., Wins, P., Janssen, E., Wieringa, B., Grisar, T., and Bettendorff, L. (2002) Adenylate kinase 1 knockout mice have normal thiamine triphosphate levels, Biochim. Biophys. Acta, 1592, 117–121, doi:  https://doi.org/10.1016/S0167-4889(02)00277-X.CrossRefPubMedGoogle Scholar
  49. 49.
    Shikata, H., Koyama, S., Egi, Y., Yamada, K., and Kawasaki, T. (1989) Cytosolic adenylate kinase catalyzes the synthesis of thiamin triphosphate from thiamin diphosphate, Biochem. Int., 18, 933–941.PubMedGoogle Scholar
  50. 50.
    Bettendorff, L., Lakaye, B., Kohn, G., and Wins, P. (2014) Thiamine triphosphate: a ubiquitous molecule in search of a physiological role, Metab. Brain Dis., 29, 1069–1082, doi:  https://doi.org/10.1007/s11011-014-9509-4.CrossRefPubMedGoogle Scholar
  51. 51.
    Gigliobianco, T., Gangolf, M., Lakaye, B., Pirson, B., von Ballmoos, C., Wins, P., and Bettendorff, L. (2013) An alternative role of FoF1-ATP synthase in Escherichia coli: synthesis of thiamine triphosphate, Sci. Rep., 3, 1071, doi:  https://doi.org/10.1038/srep01071.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Makarchikov, A. F., and Chernikevich, I. P. (1992) Purification and characterization of thiamine triphosphatase from bovine brain, Biochim. Biophys. Acta, 1117, 326–332, doi:  https://doi.org/10.1016/0304-4165(92)90032-P.CrossRefPubMedGoogle Scholar
  53. 53.
    Bettendorff, L., Michel-Cahay, C., Grandfils, C., De Rycker, C., and Schoffeniels, E. (1987) Thiamine triphosphate and membrane-associated thiamine phosphatases in the electric organ of Electrophorus electricus, J. Neurochem., 49, 495–502, doi:  https://doi.org/10.1111/j.1471-4159.1987.tb02891.x.CrossRefPubMedGoogle Scholar
  54. 54.
    Suryo Rahmanto, Y., Dunn, L. L., and Richardson, D. R. (2007) Identification of distinct changes in gene expression after modulation of melanoma tumor antigen p97 (melanotransferrin) in multiple models in vitro and in vivo, Carcinogenesis, 28, 2172–2183, doi:  https://doi.org/10.1093/carcin/bgm096.CrossRefPubMedGoogle Scholar
  55. 55.
    Murata, K. (1982) Actions of two types of thiaminase on thiamin and its analogues, Ann. N. Y. Acad. Sci., 378, 146–156, doi:  https://doi.org/10.1111/j.1749-6632.1982.tb31193.x.CrossRefPubMedGoogle Scholar
  56. 56.
    Jenkins, A. H., Schyns, G., Potot, S., Sun, G., and Begley, T. P. (2007) A new thiamin salvage pathway, Nat. Chem. Biol., 3, 492–497, doi:  https://doi.org/10.1038/nchembio.2007.13.CrossRefPubMedGoogle Scholar
  57. 57.
    Petrov, S. A. (1992) Thiamine metabolism in mouse organs and tissues in vivo and in vitro, Fiziol. Zh., 38, 79–75.PubMedGoogle Scholar
  58. 58.
    Matsuo, T., and Suzuoki, Z. (1969) The occurrence of 4-methylthiazole-5-acetic acid as a thiamine metabolite in rabbit, dog, man and rat, J. Biochem., 65, 953–960.CrossRefPubMedGoogle Scholar
  59. 59.
    Nishimune, T., Watanabe, Y., Okazaki, H., and Akai, H. (2000) Thiamin is decomposed due to Anaphe spp. entomophagy in seasonal ataxia patients in Nigeria, J. Nutr., 130, 1625–1628, doi:  https://doi.org/10.1093/jn/130.6.1625.CrossRefPubMedGoogle Scholar
  60. 60.
    Bos, M., and Kozik, A. (2000) Some molecular and enzymatic properties of a homogeneous preparation of thiaminase I purified from carp liver, J. Protein Chem., 19, 75–84, doi:  https://doi.org/10.1023/A:1007043530616.CrossRefPubMedGoogle Scholar
  61. 61.
    Vimokesant, S. L., Hilker, D. M., Nakornchai, S., Rungruangsak, K., and Dhanamitta, S. (1975) Effects of betel nut and fermented fish on the thiamin status of north-eastern Thais, Am. J. Clin. Nutr., 28, 1458–1463, doi:  https://doi.org/10.1093/ajcn/28.12.1458.CrossRefPubMedGoogle Scholar
  62. 62.
    Law, R. H., Zhang, Q., McGowan, S., Buckle, A. M., Silverman, G. A., Wong, W., Rosado, C. J., Langendorf, C. G., Pike, R. N., Bird, P. I., and Whisstock, J. C. (2006) An overview of the serpin superfamily, Genome Biol., 7, 216, doi:  https://doi.org/10.1186/gb-2006-7-5-216.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Huertas-Gonzalez, N., Hernando-Requejo, V., Luciano-Garcia, Z., and Cervera-Rodilla, J. L. (2015) Wernicke’s encephalopathy, wet beriberi, and polyneuropathy in a patient with folate and thiamine deficiency related to gastric phytobezoar, Case Rep. Neurol. Med., 2015, 624807, doi:  https://doi.org/10.1155/2015/624807.PubMedPubMedCentralGoogle Scholar
  64. 64.
    Dutta, B., Huang, W., Molero, M., Kekuda, R., Leibach, F. H., Devoe, L. D., Ganapathy, V., and Prasad, P. D. (1999) Cloning of the human thiamine transporter, a member of the folate transporter family, J. Biol. Chem., 274, 31925–31929, doi:  https://doi.org/10.1074/jbc.274.45.31925.CrossRefPubMedGoogle Scholar
  65. 65.
    Said, H. M., Balamurugan, K., Subramanian, V. S., and Marchant, J. S. (2004) Expression and functional contribution of hTHTR-2 in thiamin absorption in human intestine, Am. J. Physiol. Gastrointest. Liver Physiol., 286, G491–G498, doi:  https://doi.org/10.1152/ajpgi.00361.2003.CrossRefPubMedGoogle Scholar
  66. 66.
    Akin, L., Kurtoglu, S., Kendirci, M., Akin, M. A., and Karakukcu, M. (2011) Does early treatment prevent deafness in thiamine-responsive megaloblastic anaemia syndrome? J. Clin. Res. Pediatr. Endocrinol., 3, 36–39, doi:  https://doi.org/10.4274/jcrpe.v3i1.08.CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Mendoza, R., Miller, A. D., and Overbaugh, J. (2013) Disruption of thiamine uptake and growth of cells by feline leukemia virus subgroup A, J. Virol., 87, 2412–2419, doi:  https://doi.org/10.1128/JVI.03203-12.CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Ortigoza-Escobar, J. D., Molero-Luis, M., Arias, A., Oyarzabal, A., Darin, N., Serrano, M., Garcia-Cazorla, A., Tondo, M., Hernandez, M., Garcia-Villoria, J., Casado, M., Gort, L., Mayr, J. A., Rodriguez-Pombo, P., Ribes, A., Artuch, R., and Perez-Duenas, B. (2016) Free thiamine is a potential biomarker of thiamine transporter-2 deficiency: a treatable cause of Leigh syndrome, Brain, 139, 31–38, doi:  https://doi.org/10.1093/brain/awv342.CrossRefPubMedGoogle Scholar
  69. 69.
    Alfadhel, M. (2017) Early infantile leigh-like SLC19A3 gene defects have a poor prognosis: report and review, J. Centr. Nerv. Syst. Dis., 9, 1179573517737521, doi:  https://doi.org/10.1177/1179573517737521.Google Scholar
  70. 70.
    Zhang, K., Huentelman, M. J., Rao, F., Sun, E. I., Corneveaux, J. J., Schork, A. J., Wei, Z., Waalen, J., Miramontes-Gonzalez, J. P., Hightower, C. M., Maihofer, A. X., Mahata, M., Pastinen, T., Ehret, G. B., International Consortium for Blood Pressure Genome-Wide Association Studies, Schork, N. J., Eskin, E., Nievergelt, C. M., Saier, M. H., Jr., and O’Connor, D. T. (2014) Genetic implication of a novel thiamine transporter in human hypertension, J. Am. Coll. Cardiol., 63, 1542–1555, doi:  https://doi.org/10.1016/j.jacc.2014.01.007.CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Subramanian, V. S., Nabokina, S. M., Lin-Moshier, Y., Marchant, J. S., and Said, H. M. (2013) Mitochondrial uptake of thiamin pyrophosphate: physiological and cell biological aspects, PLoS One, 8, e73503, doi:  https://doi.org/10.1371/journal.pone.0073503.CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Fraccascia, P., Sniekers, M., Casteels, M., and Van Veldhoven, P. P. (2007) Presence of thiamine pyrophosphate in mammalian peroxisomes, BMC Biochem., 8, 10, doi:  https://doi.org/10.1186/1471-2091-8-10.CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Nabokina, S. M., Inoue, K., Subramanian, V. S., Valle, J. E., Yuasa, H., and Said, H. M. (2014) Molecular identification and functional characterization of the human colonic thiamine pyrophosphate transporter, J. Biol. Chem., 289, 4405–4416, doi:  https://doi.org/10.1074/jbc.M113.528257.CrossRefPubMedGoogle Scholar
  74. 74.
    Lemos, C., Faria, A., Meireles, M., Martel, F., Monteiro, R., and Calhau, C. (2012) Thiamine is a substrate of organic cation transporters in Caco-2 cells, Eur. J. Pharmacol., 682, 37–42, doi:  https://doi.org/10.1016/j.ejphar.2012.02.028.CrossRefPubMedGoogle Scholar
  75. 75.
    Chen, L., Shu, Y., Liang, X., Chen, E. C., Yee, S. W., Zur, A. A., Li, S., Xu, L., Keshari, K. R., Lin, M. J., Chien, H. C., Zhang, Y., Morrissey, K. M., Liu, J., Ostrem, J., Younger, N. S., Kurhanewicz, J., Shokat, K. M., Ashrafi, K., and Giacomini, K. M. (2014) OCT1 is a high-capacity thiamine transporter that regulates hepatic steatosis and is a target of metformin, Proc. Natl. Acad. Sci. USA, 111, 9983–9988, doi:  https://doi.org/10.1073/pnas.1314939111.CrossRefPubMedGoogle Scholar
  76. 76.
    Kato, K., Mori, H., Kito, T., Yokochi, M., Ito, S., Inoue, K., Yonezawa, A., Katsura, T., Kumagai, Y., Yuasa, H., Moriyama, Y., Inui, K., Kusuhara, H., and Sugiyama, Y. (2014) Investigation of endogenous compounds for assessing the drug interactions in the urinary excretion involving multidrug and toxin extrusion proteins, Pharm. Res., 31, 136–147, doi:  https://doi.org/10.1007/s11095-013-1144-y.CrossRefPubMedGoogle Scholar
  77. 77.
    Zhao, R., Gao, F., Wang, Y., Diaz, G. A., Gelb, B. D., and Goldman, I. D. (2001) Impact of the reduced folate carrier on the accumulation of active thiamin metabolites in murine leukemia cells, J. Biol. Chem., 276, 1114–1118, doi:  https://doi.org/10.1074/jbc.M007919200.CrossRefPubMedGoogle Scholar
  78. 78.
    Tanihara, Y., Masuda, S., Sato, T., Katsura, T., Ogawa, O., and Inui, K. (2007) Substrate specificity of MATE1 and MATE2-K, human multidrug and toxin extrusions/H+-organic cation antiporters, Biochem. Pharmacol., 74, 359–371, doi:  https://doi.org/10.1016/j.bcp.2007.04.010.CrossRefPubMedGoogle Scholar
  79. 79.
    Liu, S., Huang, H., Lu, X., Golinski, M., Comesse, S., Watt, D., Grossman, R. B., and Moscow, J. A. (2003) Down-regulation of thiamine transporter THTR-2 gene expression in breast cancer and its association with resistance to apoptosis, Mol. Cancer Res., 1, 665–673.PubMedGoogle Scholar
  80. 80.
    Liu, X., Lam, E. K., Wang, X., Zhang, J., Cheng, Y. Y., Lam, Y. W., Ng, E. K., Yu, J., Chan, F. K., Jin, H., and Sung, J. J. (2009) Promoter hypermethylation mediates downregulation of thiamine receptor SLC19A3 in gastric cancer, Tumour Biol., 30, 242–248, doi: 10.1159/000243767.CrossRefPubMedGoogle Scholar
  81. 81.
    Ikehata, M., Ueda, K., and Iwakawa, S. (2012) Different involvement of DNA methylation and histone deacetylation in the expression of solute-carrier transporters in 4 colon cancer cell lines, Biol. Pharm. Bull., 35, 301–307, doi:  https://doi.org/10.1248/bpb.35.301.CrossRefPubMedGoogle Scholar
  82. 82.
    Zastre, J. A., Sweet, R. L., Hanberry, B. S., and Ye, S. (2013) Linking vitamin B1 with cancer cell metabolism, Cancer Metab., 1, 16, doi:  https://doi.org/10.1186/2049-3002-1-16.CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Mkrtchyan, G., Graf, A., Bettendorff, L., and Bunik, V. (2016) Cellular thiamine status is coupled to function of mitochondrial 2-oxoglutarate dehydrogenase, Neurochem. Int., 101, 66–75, doi:  https://doi.org/10.1016/j.neuint.2016.10.009.CrossRefPubMedGoogle Scholar
  84. 84.
    Daily, A., Liu, S., Bae, Y., Bhatnagar, S., and Moscow, J. A. (2011) Linear chain PEGylated recombinant Bacillus thiaminolyticus thiaminase I enzyme has growth inhibitory activity against lymphoid leukemia cell lines, Mol. Cancer Ther., 10, 1563–1570, doi:  https://doi.org/10.1158/1535-7163.MCT-11-0003.CrossRefPubMedGoogle Scholar
  85. 85.
    Liu, S., Stromberg, A., Tai, H. H., and Moscow, J. A. (2004) Thiamine transporter gene expression and exogenous thiamine modulate the expression of genes involved in drug and prostaglandin metabolism in breast cancer cells, Mol. Cancer Res., 2, 477–487.PubMedGoogle Scholar
  86. 86.
    Liang, X., Chien, H. C., Yee, S. W., Giacomini, M. M., Chen, E. C., Piao, M., Hao, J., Twelves, J., Lepist, E. I., Ray, A. S., and Giacomini, K. M. (2015) Metformin is a substrate and inhibitor of the human thiamine transporter, THTR-2 (SLC19A3), Mol. Pharm., 12, 4301–4310, doi:  https://doi.org/10.1021/acs.molpharmaceut.5b00501.CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Kimura, N., Masuda, S., Tanihara, Y., Ueo, H., Okuda, M., Katsura, T., and Inui, K. (2005) Metformin is a superior substrate for renal organic cation transporter OCT2 rather than hepatic OCT1, Drug Metab. Pharmacokinet., 20, 379–386, doi:  https://doi.org/10.2133/dmpk.20.379.CrossRefPubMedGoogle Scholar
  88. 88.
    Liang, X., Yee, S. W., Chien, H. C., Chen, E. C., Luo, Q., Zou, L., Piao, M., Mifune, A., Chen, L., Calvert, M. E., King, S., Norheim, F., Abad, J., Krauss, R. M., and Giacomini, K. M. (2018) Organic cation transporter 1 (OCT1) modulates multiple cardiometabolic traits through effects on hepatic thiamine content, PLoS Biol., 16, e2002907, doi:  https://doi.org/10.1371/journal.pbio.2002907.CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Umehara, K. I., Iwatsubo, T., Noguchi, K., and Kamimura, H. (2007) Comparison of the kinetic characteristics of inhibitory effects exerted by biguanides and H2-blockers on human and rat organic cation transporter- mediated transport: insight into the development of drug candidates, Xenobiotica, 37, 618–634, doi:  https://doi.org/10.1080/00498250701397705.CrossRefPubMedGoogle Scholar
  90. 90.
    Osiezagha, K., Ali, S., Freeman, C., Barker, N. C., Jabeen, S., Maitra, S., Olagbemiro, Y., Richie, W., and Bailey, R. K. (2013) Thiamine deficiency and delirium, Innov. Clin. Neurosci., 10, 26–32.PubMedPubMedCentralGoogle Scholar
  91. 91.
    Miralles-Linares, F., Puerta-Fernandez, S., Bernal-Lopez, M. R., Tinahones, F. J., Andrade, R. J., and Gomez-Huelgas, R. (2012) Metformin-induced hepatotoxicity, Diabetes Care, 35, e21, doi:  https://doi.org/10.2337/dc11-2306.CrossRefPubMedPubMedCentralGoogle Scholar
  92. 92.
    Kalantar-Zadeh, K., and Kovesdy, C. P. (2016) Should restrictions be relaxed for metformin use in chronic kidney disease? No, we should never again compromise safety! Diabetes Care, 39, 1281–1286, doi:  https://doi.org/10.2337/dc15-2327.CrossRefPubMedPubMedCentralGoogle Scholar
  93. 93.
    Toyama, K., Yonezawa, A., Masuda, S., Osawa, R., Hosokawa, M., Fujimoto, S., Inagaki, N., Inui, K., and Katsura, T. (2012) Loss of multidrug and toxin extrusion 1 (MATE1) is associated with metformin-induced lactic acidosis, Br. J. Pharmacol., 166, 1183–1191, doi:  https://doi.org/10.1111/j.1476-5381.2012.01853.x.CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Vecchio, S., and Protti, A. (2011) Metformin-induced lactic acidosis: no one left behind, Crit. Care, 15, 107, doi:  https://doi.org/10.1186/cc9404.CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    Amrein, K., Ribitsch, W., Otto, R., Worm, H. C., and Stauber, R. E. (2011) Severe lactic acidosis reversed by thiamine within 24 hours, Crit. Care, 15, 457, doi:  https://doi.org/10.1186/cc10495.CrossRefPubMedPubMedCentralGoogle Scholar
  96. 96.
    Godo, S., Yoshida, Y., Fujita, M., Kudo, D., Nomura, R., Shimokawa, H., and Kushimoto, S. (2017) The dramatic recovery of a patient with biguanide-associated severe lactic acidosis following thiamine supplementation, Intern. Med., 56, 455–459, doi:  https://doi.org/10.2169/internalmedicine.56.7754.CrossRefPubMedPubMedCentralGoogle Scholar
  97. 97.
    McGarvey, C., Franconi, C., Prentice, D., and Bynevelt, M. (2018) Metformin-induced encephalopathy: the role of thiamine, Intern. Med. J., 48, 194–197, doi:  https://doi.org/10.1111/imj.13693.CrossRefPubMedGoogle Scholar
  98. 98.
    Costantini, A. (2018) High-dose thiamine and essential tremor, BMJ Case Rep., 2018, bcr-2017-223945, doi:  https://doi.org/10.1136/bcr-2017-223945.CrossRefPubMedGoogle Scholar
  99. 99.
    Page, G. L., Laight, D., and Cummings, M. H. (2011) Thiamine deficiency in diabetes mellitus and the impact of thiamine replacement on glucose metabolism and vascular disease, Int. J. Clin. Pract., 65, 684–690, doi:  https://doi.org/10.1111/j.1742-1241.2011.02680.x.CrossRefPubMedGoogle Scholar
  100. 100.
    Moraes, J. O., Rodrigues, S. D. C., Pereira, L. M., Medeiros, R. C. N., de Cordova, C. A. S., and de Cordova, F. M. (2018) Amprolium exposure alters mice behavior and metabolism in vivo, Animal Model Exp. Med., 1, 272–281, doi:  https://doi.org/10.1002/ame2.12040.CrossRefPubMedPubMedCentralGoogle Scholar
  101. 101.
    Singh, V., Peng, C. S., Li, D., Mitra, K., Silvestre, K. J., Tokmakoff, A., and Essigmann, J. M. (2014) Direct observation of multiple tautomers of oxythiamine and their recognition by the thiamine pyrophosphate riboswitch, ACS Chem. Biol., 9, 227–236, doi:  https://doi.org/10.1021/cb400581f.CrossRefPubMedGoogle Scholar
  102. 102.
    Hirsch, J. A., and Parrott, J. (2012) New considerations on the neuromodulatory role of thiamine, Pharmacology, 89, 111–116, doi:  https://doi.org/10.1159/000336339.CrossRefPubMedGoogle Scholar
  103. 103.
    Aleshin, V. A., Artiukhov, A. V., Oppermann, H., Kazantsev, A. V., Lukashev, N. V., and Bunik, V. I. (2015) Mitochondrial impairment may increase cellular NAD(P)H:resazurin oxidoreductase activity, perturbing the NAD(P)H-based viability assays, Cells, 4, 427–451, doi:  https://doi.org/10.3390/cells4030427.CrossRefPubMedPubMedCentralGoogle Scholar
  104. 104.
    Fukui, S., Ohishi, N., Kishimotostakamizaw, A., and Hamazima, Y. (1965) Formation of “thiaminosuccinic acid” as an intermediate in the transformation of oxythiamine to thiamine by a thiamineless mutant of Escherichia coli, J. Biol. Chem., 240, 1315–1321.PubMedGoogle Scholar
  105. 105.
    Goyer, A., Hasnain, G., Frelin, O., Ralat, M. A., Gregory, J. F., 3rd, and Hanson, A. D. (2013) A cross-kingdom Nudix enzyme that pre-empts damage in thiamin metabolism, Biochem. J., 454, 533–542, doi:  https://doi.org/10.1042/BJ20130516.CrossRefPubMedGoogle Scholar
  106. 106.
    Zhang, F., Masania, J., Anwar, A., Xue, M., Zehnder, D., Kanji, H., Rabbani, N., and Thornalley, P. J. (2016) The uremic toxin oxythiamine causes functional thiamine deficiency in end-stage renal disease by inhibiting transketolase activity, Kidney Int., 90, 396–403, doi:  https://doi.org/10.1016/j.kint.2016.03.010.CrossRefPubMedGoogle Scholar
  107. 107.
    Linster, C. L., Van Schaftingen, E., and Hanson, A. D. (2013) Metabolite damage and its repair or pre-emption, Nat. Chem. Biol., 9, 72–80, doi:  https://doi.org/10.1038/nchembio.1141.CrossRefPubMedGoogle Scholar
  108. 108.
    Nemeria, N. S., Shome, B., DeColli, A. A., Heflin, K., Begley, T. P., Meyers, C. F., and Jordan, F. (2016) Competence of thiamin diphosphate-dependent enzymes with 2′-methoxythiamin diphosphate derived from bacimethrin, a naturally occurring thiamin anti-vitamin, Biochemistry, 55, 1135–1148, doi:  https://doi.org/10.1021/acs.biochem.5b01300.CrossRefPubMedPubMedCentralGoogle Scholar
  109. 109.
    Agyei-Owusu, K., and Leeper, F. J. (2009) Thiamin diphosphate in biological chemistry: analogues of thiamin diphosphate in studies of enzymes and riboswitches, FEBS J., 276, 2905–2916, doi:  https://doi.org/10.1111/j.1742-4658.2009.07018.x.CrossRefPubMedGoogle Scholar
  110. 110.
    Iwadate, D., Sato, K., Kanzaki, M., Komiyama, C., Watanabe, C., Eguchi, T., and Uesaka, Y. (2017) Thiamine deficiency in metronidazole-induced encephalopathy: a metabolic correlation? J. Neurol. Sci., 379, 324–326, doi:  https://doi.org/10.1016/j.jns.2017.06.042.CrossRefPubMedGoogle Scholar
  111. 111.
    Ding, B. C., Whetstine, J. R., Witt, T. L., Schuetz, J. D., and Matherly, L. H. (2001) Repression of human reduced folate carrier gene expression by wild type p53, J. Biol. Chem., 276, 8713–8719, doi:  https://doi.org/10.1074/jbc.M005248200.CrossRefPubMedGoogle Scholar
  112. 112.
    Yang, Z., Ge, J., Yin, W., Shen, H., Liu, H., and Guo, Y. (2004) The expression of p53, MDM2 and Ref1 gene in cultured retina neurons of SD rats treated with vitamin B1 and/or elevated pressure, Yan Ke Xue Bao, 20, 259–263.PubMedGoogle Scholar
  113. 113.
    Chornyy, S., Parkhomenko, Y., and Chorna, N. (2017) Thiamine antagonists trigger p53-dependent apoptosis in differentiated SH-SY5Y cells, Sci. Rep., 7, 10632, doi:  https://doi.org/10.1038/s41598-017-10878-x.CrossRefPubMedPubMedCentralGoogle Scholar
  114. 114.
    Pagadala, N. S., Bjorndahl, T. C., Blinov, N., Kovalenko, A., and Wishart, D. S. (2013) Molecular docking of thiamine reveals similarity in binding properties between the prion protein and other thiamine-binding proteins, J. Mol. Model., 19, 5225–5235, doi: 10.1007/s00894-013-1979-5.CrossRefPubMedGoogle Scholar
  115. 115.
    Perez-Pineiro, R., Bjorndahl, T. C., Berjanskii, M. V., Hau, D., Li, L., Huang, A., Lee, R., Gibbs, E., Ladner, C., Dong, Y. W., Abera, A., Cashman, N. R., and Wishart, D. S. (2011) The prion protein binds thiamine, FEBS J., 278, 4002–4014, doi:  https://doi.org/10.1111/j.1742-4658.2011.08304.x.CrossRefPubMedGoogle Scholar
  116. 116.
    Pulkkinen, V., Manson, M. L., Safholm, J., Adner, M., and Dahlen, S. E. (2012) The bitter taste receptor (TAS2R) agonists denatonium and chloroquine display distinct patterns of relaxation of the guinea pig trachea, Am. J. Physiol. Lung Cell Mol. Physiol., 303, L956–L966, doi:  https://doi.org/10.1152/ajplung.00205.2012.CrossRefPubMedGoogle Scholar
  117. 117.
    Lossow, K., Hubner, S., Roudnitzky, N., Slack, J. P., Pollastro, F., Behrens, M., and Meyerhof, W. (2016) Comprehensive analysis of mouse bitter taste receptors reveals different molecular receptive ranges for orthologous receptors in mice and humans, J. Biol. Chem., 291, 15358–15377, doi:  https://doi.org/10.1074/jbc.M116.718544.CrossRefPubMedPubMedCentralGoogle Scholar
  118. 118.
    Lucas, J. I., and Marin, I. (2007) A new evolutionary paradigm for the Parkinson disease gene DJ-1, Mol. Biol. Evol., 24, 551–561, doi:  https://doi.org/10.1093/molbev/msl186.CrossRefPubMedGoogle Scholar
  119. 119.
    Mkrtchyan, G. V. (2017) Molecular Mechanisms of the Action of Thiamine (Vitamin B1) in Nervous Tissue [in Russian], Lomonosov Moscow State University, Moscow.Google Scholar
  120. 120.
    Tsepkova, P. M., Artiukhov, A. V., Boyko, A. I., Aleshin, V. A., Mkrtchyan, G. V., Zvyagintseva, M. A., Ryabov, S. I., Ksenofontov, A. L., Baratova, L. A., Graf, A. V., and Bunik, V. I. (2017) Thiamine induces long-term changes in amino acid profiles and activities of 2-oxoglutarate and 2-oxoadipate dehydrogenases in rat brain, Biochemistry (Moscow), 82, 723–736, doi:  https://doi.org/10.1134/S0006297917060098.CrossRefGoogle Scholar
  121. 121.
    Petrov, S. A., and Donesko, E. V. (1989) Effect of thiamine and its metabolites on aspartate and alanine aminotransferase activity in the body of white rats and in donor blood, Fiziol. Zh., 35, 94–96.PubMedGoogle Scholar
  122. 122.
    Singh, M., Kaur, M., Kukreja, H., Chugh, R., Silakari, O., and Singh, D. (2013) Acetylcholinesterase inhibitors as Alzheimer therapy: from nerve toxins to neuroprotection, Eur. J. Med. Chem., 70, 165–188, doi:  https://doi.org/10.1016/j.ejmech.2013.09.050.CrossRefPubMedGoogle Scholar
  123. 123.
    Lonsdale, D. (2004) Thiamine tetrahydrofurfuryl disulfide: a little known therapeutic agent, Med. Sci. Monit., 10, RA199–RA203.PubMedGoogle Scholar
  124. 124.
    Tapias, V., Jainuddin, S., Ahuja, M., Stack, C., Elipenahli, C., Vignisse, J., Gerges, M., Starkova, N., Xu, H., Starkov, A. A., Bettendorff, L., Hushpulian, D. M., Smirnova, N. A., Gazaryan, I. G., Kaidery, N. A., Wakade, S., Calingasan, N. Y., Thomas, B., Gibson, G. E., Dumont, M., and Beal, M. F. (2018) Benfotiamine treatment activates the Nrf2/ARE pathway and is neuroprotective in a transgenic mouse model of tauopathy, Hum. Mol. Genet., 27, 2874–2892, doi:  https://doi.org/10.1093/hmg/ddy201.CrossRefPubMedGoogle Scholar
  125. 125.
    Gibson, G. E., Hirsch, J. A., Fonzetti, P., Jordan, B. D., Cirio, R. T., and Elder, J. (2016) Vitamin B1 (thiamine) and dementia, Ann. N. Y. Acad. Sci., 1367, 21–30, doi:  https://doi.org/10.1111/nyas.13031.CrossRefPubMedPubMedCentralGoogle Scholar
  126. 126.
    Volvert, M. L., Seyen, S., Piette, M., Evrard, B., Gangolf, M., Plumier, J. C., and Bettendorff, L. (2008) Benfotiamine, a synthetic S-acyl thiamine derivative, has different mechanisms of action and a different pharmacological profile than lipid-soluble thiamine disulfide derivatives, BMC Pharmacol., 8, 10, doi:  https://doi.org/10.1186/1471-2210-8-10.CrossRefPubMedPubMedCentralGoogle Scholar
  127. 127.
    Vignisse, J., Sambon, M., Gorlova, A., Pavlov, D., Caron, N., Malgrange, B., Shevtsova, E., Svistunov, A., Anthony, D. C., Markova, N., Bazhenova, N., Coumans, B., Lakaye, B., Wins, P., Strekalova, T., and Bettendorff, L. (2017) Thiamine and benfotiamine prevent stress-induced suppression of hippocampal neurogenesis in mice exposed to predation without affecting brain thiamine diphosphate levels, Mol. Cell Neurosci., 82, 126–136, doi:  https://doi.org/10.1016/j.mcn.2017.05.005.CrossRefPubMedGoogle Scholar
  128. 128.
    Mouton-Liger, F., Rebillat, A. S., Gourmaud, S., Paquet, C., Leguen, A., Dumurgier, J., Bernadelli, P., Taupin, V., Pradier, L., Rooney, T., and Hugon, J. (2015) PKR downregulation prevents neurodegeneration and β-amyloid production in a thiamine-deficient model, Cell Death Dis., 6, e1594, doi:  https://doi.org/10.1038/cddis.2014.552.CrossRefPubMedPubMedCentralGoogle Scholar
  129. 129.
    Sun, X. J., Zhao, L., Zhao, N., Pan, X. L., Fei, G. Q., Jin, L. R., and Zhong, C. J. (2012) Benfotiamine prevents increased β-amyloid production in HEK cells induced by high glucose, Neurosci. Bull., 28, 561–566, doi:  https://doi.org/10.1007/s12264-012-1264-0.CrossRefPubMedPubMedCentralGoogle Scholar
  130. 130.
    Zhang, X., Hernandez, I., Rei, D., Mair, W., Laha, J. K., Cornwell, M. E., Cuny, G. D., Tsai, L. H., Steen, J. A., and Kosik, K. S. (2013) Diaminothiazoles modify Tau phosphorylation and improve the tauopathy in mouse models, J. Biol. Chem., 288, 22042–22056, doi:  https://doi.org/10.1074/jbc.M112.436402.CrossRefPubMedPubMedCentralGoogle Scholar
  131. 131.
    Markova, N., Bazhenova, N., Anthony, D. C., Vignisse, J., Svistunov, A., Lesch, K. P., Bettendorff, L., and Strekalova, T. (2017) Thiamine and benfotiamine improve cognition and ameliorate GSK-3β-associated stress-induced behaviours in mice, Prog. Neuropsychopharmacol. Biol. Psychiatry, 75, 148–156, doi:  https://doi.org/10.1016/j.pnpbp.2016.11.001.CrossRefPubMedGoogle Scholar
  132. 132.
    Gold, M., Hauser, R. A., and Chen, M. F. (1998) Plasma thiamine deficiency associated with Alzheimer’s disease but not Parkinson’s disease, Metab. Brain Dis., 13, 43–53, doi:  https://doi.org/10.1023/A:1020678912330.CrossRefPubMedGoogle Scholar
  133. 133.
    Pan, X., Fei, G., Lu, J., Jin, L., Pan, S., Chen, Z., Wang, C., Sang, S., Liu, H., Hu, W., Zhang, H., Wang, H., Wang, Z., Tan, Q., Qin, Y., Zhang, Q., Xie, X., Ji, Y., Cui, D., Gu, X., Xu, J., Yu, Y., and Zhong, C. (2016) Measurement of blood thiamine metabolites for Alzheimer’s disease diagnosis, EBioMedicine, 3, 155–162, doi:  https://doi.org/10.1016/j.ebiom.2015.11.039.CrossRefPubMedGoogle Scholar
  134. 134.
    Pan, X., Sang, S., Fei, G., Jin, L., Liu, H., Wang, Z., Wang, H., and Zhong, C. (2017) Enhanced activities of blood thiamine diphosphatase and monophosphatase in Alzheimer’s disease, PLoS One, 12, e0167273, doi:  https://doi.org/10.1371/journal.pone.0167273.CrossRefPubMedPubMedCentralGoogle Scholar
  135. 135.
    Jimenez-Jimenez, F. J., Molina, J. A., Hernanz, A., Fernandez-Vivancos, E., de Bustos, F., Barcenilla, B., Gomez-Escalonilla, C., Zurdo, M., Berbel, A., and Villanueva, C. (1999) Cerebrospinal fluid levels of thiamine in patients with Parkinson’s disease, Neurosci. Lett., 271, 33–36, doi:  https://doi.org/10.1016/S0304-3940(99)00515-7.CrossRefPubMedGoogle Scholar
  136. 136.
    Mizuno, Y., Matuda, S., Yoshino, H., Mori, H., Hattori, N., and Ikebe, S. (1994) An immunohistochemical study on α-ketoglutarate dehydrogenase complex in Parkinson’s disease, Ann. Neurol., 35, 204–210, doi:  https://doi.org/10.1002/ana.410350212.CrossRefPubMedGoogle Scholar
  137. 137.
    Haglin, L., Johansson, I., Forsgren, L., and Backman, L. (2017) Intake of vitamin B before onset of Parkinson’s disease and atypical parkinsonism and olfactory function at the time of diagnosis, Eur. J. Clin. Nutr., 71, 97–102, doi:  https://doi.org/10.1038/ejcn.2016.181.CrossRefPubMedGoogle Scholar
  138. 138.
    Boyko, A., Ksenofontov, A., Ryabov, S., Baratova, L., Graf, A., and Bunik, V. (2017) Delayed influence of spinal cord injury on the amino acids of NO. metabolism in rat cerebral cortex is attenuated by thiamine, Front. Med. (Lausanne), 4, 249, doi:  https://doi.org/10.3389/fmed.2017.00249.CrossRefGoogle Scholar
  139. 139.
    Mkrtchyan, G. V., Ucal, M., Mullebner, A., Dumitrescu, S., Kames, M., Moldzio, R., Molcanyi, M., Schaefer, S., Weidinger, A., Schaefer, U., Hescheler, J., Duvigneau, J. C., Redl, H., Bunik, V. I., and Kozlov, A. V. (2018) Thiamine preserves mitochondrial function in a rat model of traumatic brain injury, preventing inactivation of the 2-oxoglutarate dehydrogenase complex, Biochim. Biophys. Acta Bioenerg., 1859, 925–931, doi:  https://doi.org/10.1016/j.bbabio.2018.05.005.CrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • V. A. Aleshin
    • 1
    • 2
  • G. V. Mkrtchyan
    • 1
  • V. I. Bunik
    • 1
    • 2
    Email author
  1. 1.Lomonosov Moscow State University, Faculty of Bioengineering and BioinformaticsMoscowRussia
  2. 2.Belozersky Institute of Physico-Chemical BiologyLomonosov Moscow State UniversityMoscowRussia

Personalised recommendations