Biochemistry (Moscow)

, Volume 84, Issue 7, pp 817–828 | Cite as

DNA Import into Plant Mitochondria: Complex Approach for in organello and in vivo Studies

  • T. A. Tarasenko
  • V. I. Tarasenko
  • M. V. KoulintchenkoEmail author
  • E. S. Klimenko
  • Yu. M. Konstantinov


Natural competence of mitochondria for DNA uptake has been known for the last 20 years. Until the present time, all studies of this process have been conducted exclusively in isolated mitochondria, as no system for investigation of the DNA transport into the mitochondria in intact cells has been available. The objective of this work was to improve and standardize the existing approaches for investigating DNA import into plant mitochondria in an in organello system. A method for detecting the import of fluorescently labeled DNA substrates has been developed. Based on the features of DNA import into the mitochondria, we suggested an efficient method for the evaluation of the DNA import efficiency by quantitative PCR. We also developed and characterized the in vivo system that allows to detect DNA transport from the cytoplasm to the mitochondrial matrix in Arabidopsis thaliana protoplasts. A combination of the proposed techniques for studying the DNA uptake by plant mitochondria might be useful for elucidating whether the properties of the mitochondrial DNA import established in the in organello system are preserved in vivo.


DNA import plant mitochondria fluorescent labeling protoplasts transformation Arabidopsis thaliana 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors are grateful to E. V. Klimenkov for performing microscopic examination and N. E. Korotaeva for help in performing fluorescence analysis. Equipment of the Bioanalitika Center for Collective Use, Siberian Institute of Plant Physiology and Biochemistry, Siberian Branch of the Russian Academy of Sciences, Irkutsk, was used in this study.


  1. 1.
    Saccone, C., De Giorgi, C, Gissi, C., Pesole, G., and Reyes, A. (1999) Evolutionary genomics in Metazoa: the mitochondrial DNA as a model system, Gene, 238, 195–209; doi: 10.1016/S0378-1119(99)00270-X.CrossRefGoogle Scholar
  2. 2.
    Alverson, A. J., Rice, D. W., Dickinson, S., Barry, K., and Palmer, J. D. (2011) Origins and recombination of the bacterial-sized multichromosomal mitochondrial genome of cucumber, Plant Cell, 23, 2499–2513; doi: 10.1105/tpc.111.087189.CrossRefGoogle Scholar
  3. 3.
    Kubo, T., and Newton, K. J. (2008) Angiosperm mito-chondrial genomes and mutations, Mitochondrion, 8, 5–14; doi: 10.1016/j.mito.2007.10.006.CrossRefGoogle Scholar
  4. 4.
    Unseld, M., Marienfeld, J. R., Brandt, P., and Brennicke, A. (1997) The mitochondrial genome of Arabidopsis thaliana contains 57 genes in 366,924 nucleotides, Nat. Genet., 15, 57–61; doi: 10.1038/ng0197-57.CrossRefGoogle Scholar
  5. 5.
    Sanchez-Puerta, M. V. (2014) Involvement of plastid, mitochondrial and nuclear genomes in plant-to-plant horizontal gene transfer, Acta Soc. Bot. Pol., 83, 317–323; doi: 10.5586/asbp.2014.041.CrossRefGoogle Scholar
  6. 6.
    Kubo, T., Nishizawa, S., Sugawara, A., Itchoda, N., Estiati, A., and Mikami, T. (2000) The complete nucleotide sequence of the mitochondrial genome of sugar beet (Beta vulgaris L.) reveals a novel gene for tRNAcys(GCA), Nucleic Acids Res., 28, 2571–2576; doi: 10.1093/nar/28.13.2571.CrossRefGoogle Scholar
  7. 7.
    Koulintchenko, M., Konstantinov, Y., and Dietrich, A. (2003) Plant mitochondria actively import DNA via the permeability transition pore complex, EMBO J., 22, 1245–1254; doi: 10.1093/emboj/cdg128.CrossRefGoogle Scholar
  8. 8.
    Konstantinov, Y. M., Dietrich, A., Weber-Lotfi, F., Ibrahim, N., Klimenko, E. S., Tarasenko, V. I., Bolotova, T. A., and Koulintchenko, M. V. (2016) DNA import into mitochondria, Biochemistry (Moscow), 81, 1044–1056; doi: 10.1134/S0006297916100035.CrossRefGoogle Scholar
  9. 9.
    Koulintchenko, M., Temperley, R. J., Mason, P. A., Dietrich, A., and Lightowlers, R. N. (2006) Natural competence of mammalian mitochondria allows the molecular investigation of mitochondrial gene expression, Hum. Mol. Genet., 15, 143–154; doi: 10.1093/hmg/ddi435.CrossRefGoogle Scholar
  10. 10.
    Weber-Lotfi, F., Ibrahim, N., Boesch P., Cosset, A., Konstantinov, Y., Lightowlers, R. N., and Dietrich, A. (2009) Developing a genetic approach to investigate the mechanism of mitochondrial competence for DNA import, Biochim. Biophys. Acta, 1787, 320–327; doi: 10.1016/j.bbabio.2008.11.001.CrossRefGoogle Scholar
  11. 11.
    Campo, M. L., Peixoto, P. M., and Martinez-Caballero, S. (2017) Revisiting trends on mitochondrial mega-channels for the import of proteins and nucleic acids, J. Bioenerg. Biomembr., 49, 75–99; doi: 10.1007/s10863-016-9662-z.CrossRefGoogle Scholar
  12. 12.
    Verechshagina, N. A., Konstantinov, Y. M., Kamenski, P. A., and Mazunin, I. O. (2018) Import of proteins and nucleic acids into mitochondria, Biochemistry (Moscow), 83, 643–661; doi: 10.1134/S0006297918060032.CrossRefGoogle Scholar
  13. 13.
    Delage, L., Duchene, A. M., Zaepfel, M., and Marechal-Drouard, L. (2003) The anticodon and the D-domain sequences are essential determinants for plant cytosolic tRNAVa l import into mitochondria, Plant J., 34, 623–633; doi: 10.1046/j.1365-313X.2003.01752.x.CrossRefGoogle Scholar
  14. 14.
    Weber-Lotfi, F., Koulintchenko, M. V., Ibrahim, N., Hammann, P., Mileshina, D. V., Konstantinov, Y. M., and Dietrich, A. (2015) Nucleic acid import into mitochondria: new insights into the translocation pathways, Biochim. Biophys. Acta, 1853, 3165–3181; doi: 10.1016/j.bbam-cr.2015.09.011.CrossRefGoogle Scholar
  15. 15.
    Mileshina, D., Koulintchenko, M., Konstantinov, Yu., and Dietrich, A. (2011) Transfection of plant mitochondria and in organello gene integration, Nucleic Acids Res., 39, e115; doi: 10.1093/nar/gkr517.CrossRefGoogle Scholar
  16. 16.
    Sweetlove, L. J., Taylor, N. L., and Leaver, C. J. (2007) Isolation of intact, functional mitochondria from the model plant Arabidopsis thaliana, Methods Mol. Biol., 372, 125–136; doi: 10.1007/978-1-59745-365-3_9.CrossRefGoogle Scholar
  17. 17.
    Newton, K. J., and Walbot, V. (1985) Maize mitochondria synthesize organ-specific polypeptides, PNAS, 82, 6879–6883; doi: 10.1073/pnas.82.20.6879.CrossRefGoogle Scholar
  18. 18.
    Neuburger, M., Journet, E. P., Bligny, R., Carde J.-P., and Douce, R. (1982) Purification of plant mitochondria by isopycnic centrifugation in density gradients of Percoll, Arch. Biochem. Biophys., 217, 312–323; doi: 10.1016/0003-9861(82)90507-0.CrossRefGoogle Scholar
  19. 19.
    Bradford, M. M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Anal. Biochem., 72, 248–254; doi: 10.1016/0003-2697(76)90527-3.CrossRefGoogle Scholar
  20. 20.
    Layton, B. E., Sastry, A. M., Lastoskie, C. M., Philbert, M. A., Miller, T. J., Sullivan, K. A., Feldman, E. L., and Wang, C.-W. (2004) In situ imaging of mitochondrial outer membrane pores using atomic force microscopy, Biotechniques, 37, 564–573; doi: 10.2144/04374BI01.CrossRefGoogle Scholar
  21. 21.
    Douce, R., and Neuburger, M. (1989) The uniqueness of plant mitochondria, Annu. Rev. Plant Physiol. Plant Mol. Biol., 40, 371–414; doi: 10.1146/annurev.pp.40.060189.002103.CrossRefGoogle Scholar
  22. 22.
    Grabel’nykh, O. I., Kirichenko, K. A., Pobezhimova, T. P., Borovik, O. A., Pavlovskaya, N. S., Lyubushkina, I. V., Koroleva, N. A., and Voinikov, V. K. (2014) Effect of cold shock on fatty acid composition and functional state of mitochondria in stratified and non-stratified seedlings of winter wheat, Biol. Membr. (Moscow), 31, 204–217; doi: 10.7868/S0233475514020029.Google Scholar
  23. 23.
    Wu, F.-H., Shen, S.-C., Lee, L.-Y., Chan, M.-T., and Lin, C.-S. (2009) Tape-Arabidopsis sandwich - a simpler Arabidopsis protoplast isolation method, Plant Methods, 5, 1–10; doi: 10.1186/1746-4811-5-16.CrossRefGoogle Scholar
  24. 24.
    Klimenko, E. S., Mileiko, V. A., Morozkin, E. S., Laktionov, P. P., and Konstantinov, Yu. M. (2011) Study of DNA import and export in potato (Solanum tuberosum) mitochondria using quantitative PCR, Biochemistry (Moscow), Suppl. Ser. A, 5, 170–176; doi: 10.1134/S1990747811030044.CrossRefGoogle Scholar
  25. 25.
    Meyer, E. H., and Millar, A. H. (2008) Isolation of mitochondria from plant cell culture, Methods Mol. Biol., 425, 163–169; doi: 10.1007/978-1-60327-210-0_15.CrossRefGoogle Scholar
  26. 26.
    Doolittle, W. F., Boucher, Y., Nesbo, C. L., Douady, C. J., Andersson, J. O., and Roger, A. J. (2003) How big is the iceberg of which organellar genes in nuclear genomes are but the tip? Philos. Trans. R. Soc. Lond. B Biol. Sci., 358, 39–57; doi: 10.1098/rstb.2002.1185.CrossRefGoogle Scholar
  27. 27.
    Nakamura, Y., Itoh, T., Matsuda, H., and Gojobori, T. (2004) Biased biological functions of horizontally transferred genes in prokaryotic genomes, Nat. Genet., 36, 760–766; doi: 10.1038/ng1381.CrossRefGoogle Scholar
  28. 28.
    Bai, H., Schiralli Lester, G. M., Petishnok, L. C., and Dean, D. A. (2017) Cytoplasmic transport and nuclear import of plasmid DNA, Biosci. Rep., 37, BSR20160616; doi: 10.1042/BSR20160616.Google Scholar
  29. 29.
    Dowty, M. E., Williams, P., Zhang, G., Hagstrom, J. E., and Wolff, J. A. (1995) Plasmid DNA entry into postmitot-ic nuclei of primary rat myotubes, Proc. Natl. Acad. Sci. USA, 92, 4572–4576; doi: 10.1073/pnas.92.10.4572.CrossRefGoogle Scholar
  30. 30.
    Hagstrom, J. E., Ludtke, J. J., Bassik, M. C., Sebestyen, M. G., Adam, S. A., and Wolff, J. A. (1997) Nuclear import of DNA in digitonin-permeabilized cells, J. Cell Sci., 110, 2323–2331.Google Scholar
  31. 31.
    Johnston, I. G., and Williams, B. P. (2016) Evolutionary inference across eukaryotes identifies specific pressures favoring mitochondrial gene retention, Cell Syst., 2, 101–111; doi: 10.1016/j.cels.2016.01.013.CrossRefGoogle Scholar
  32. 32.
    Pichersky, E., Logsdon, J. M., Jr., McGrath, J. M., and Stasys, R. A. (1991) Fragments of plastid DNA in the nuclear genome of tomato: prevalence, chromosomal location, and possible mechanism of integration, Mol. Gen. Genet., 225, 453–458; doi: 10.1007/BF00261687.CrossRefGoogle Scholar
  33. 33.
    Ayliffe, M. A., and Timmis, J. N. (1992) Plastid DNA sequence homologies in the tobacco nuclear genome, Mol. Gen. Genet., 236, 105–112; doi: 10.1007/BF00279648.Google Scholar
  34. 34.
    Mower, J. P., Jain, K., and Hepburn, N. J. (2012) The role of horizontal transfer in shaping the plant mitochondrial genome, Adv. Botan. Res., 63, 41–69; doi: 10.1016/B978-0-12-394279-1.00003-X.CrossRefGoogle Scholar
  35. 35.
    Marechal-Drouard, L., Small, I., Weil, J. H., and Dietrich, A. (1995) Transfer RNA import into plant mitochondria, Methods Enzymol., 260, 310–327; doi: 10.1016/0076-6879(95)60148-1.CrossRefGoogle Scholar
  36. 36.
    Diao, X. M., Freeling, M., and Lisch, D. (2006) Horizontal transfer of a plant transposon, Plos Biol., 4, e5; doi: 10.1371/journal.pbio.0040005.CrossRefGoogle Scholar
  37. 37.
    Rice, D. W., and Palmer, J. D. (2006) An exceptional horizontal gene transfer in plastids: gene replacement by a distant bacterial paralog and evidence that haptophyte and cryptophyte plastids are sisters, BMC Biol., 4, 31; doi: 10.1186/1741-7007-4-31.CrossRefGoogle Scholar
  38. 38.
    Richardson, A. O., and Palmer, J. D. (2007) Horizontal gene transfer in plants, J. Exp. Bot., 58, 1–9; doi: 10.1093/jxb/erl148.CrossRefGoogle Scholar
  39. 39.
    Jackson, C. B., Zbindena, C., Gallati, S., and Schaller, A. (2014) Heterologous expression from the human D-loop in organello, Mitochondrion, 17, 67–75; doi: 10.1016/j.mito. 2014.05.011.CrossRefGoogle Scholar
  40. 40.
    Remacle, C., Larosa, V., Salinas, T., Hamel, P., Subrahmanian, N., Bonnefoy, N., and Kempken, F. (2012) in Genomics of Chloroplasts and Mitochondria, Advances in Photosynthesis and Respiration (Bock, R., and Knoop, V., eds.) Springer Science, Belgium; doi: 10.1007/978-94-007-2920-9.Google Scholar
  41. 41.
    Niazi, A. K., Mileshina, D., Cosset, A., Val, R., Weber-Lotfi, F., and Dietrich, A. (2013) Targeting nucleic acids into mitochondria: progress and prospects, Mitochondrion, 13, 548–558; doi: 10.1016/j.mito.2012.05.004.CrossRefGoogle Scholar
  42. 42.
    Bhushan, S., Pavlov, P. F., Rudhe, C., and Glaser, E. (2007) In vitro and in vivo methods to study protein import into plant mitochondria, Methods Mol. Biol., 390, 131–150; doi: 10.1007/978-1-59745-466-7_9.CrossRefGoogle Scholar
  43. 43.
    Wehner, N., Hartmann, L., Ehlert, A., Bottner, S., Onate-Sanchez, L., and Droge-Laser, W. (2011) High-throughput protoplast transactivation (PTA) system for the analysis of Arabidopsis transcription factor function, Plant J., 68, 560–569; doi: 10.1111/j.1365-313X.2011.04704.x.CrossRefGoogle Scholar
  44. 44.
    Wintz, H., and Dietrich, A. (1996) Electroporation of small RNAs into plant protoplasts: mitochondrial uptake of transfer RNAs, Biochem. Biophys. Res. Commun., 223, 204–210; doi: 10.1006/bbrc.1996.0870.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • T. A. Tarasenko
    • 1
  • V. I. Tarasenko
    • 1
  • M. V. Koulintchenko
    • 1
    Email author
  • E. S. Klimenko
    • 1
  • Yu. M. Konstantinov
    • 1
  1. 1.Siberian Institute of Plant Physiology and BiochemistrySiberian Branch of the Russian Academy of SciencesIrkutskRussia

Personalised recommendations