Advertisement

Biochemistry (Moscow)

, Volume 84, Issue 7, pp 746–761 | Cite as

Cysteine Cathepsins: Potential Applications in Diagnostics and Therapy of Malignant Tumors

  • A. I. Petushkova
  • L. V. Savvateeva
  • D. O. Korolev
  • A. A. ZamyatninJr.Email author
Review

Abstract

Cysteine cathepsins are proteolytic enzymes involved in protein degradation in lysosomes and endosomes. Cysteine cathepsins have been also found in the tumor microenvironment during carcinogenesis, where they are implicated in proliferation, invasion and metastasis of tumor cells through the degradation of extracellular matrix, suppression of cell–cell interactions, and promotion of angiogenesis. In this regard, cathepsins can have a diagnostic value and represent promising targets for antitumor drugs aimed at inhibition of these proteases. Moreover, cysteine cathepsins can be used as activators of novel targeted therapeutic agents. This review summarizes recent discovered roles of cysteine cathepsins in carcinogenesis and discusses new trends in cancer therapy and diagnostics using cysteine cathepsins as markers, targets, or activators.

Keywords

cysteine cathepsins carcinogenesis antitumor therapy targeted drug delivery proteolysis diagnostics 

Abbreviations

ADC

antibody–drug conjugate

APC

antigen-presenting cell

DC

dendritic cell

ECM

extracellular matrix

FRET

Förster resonance energy transfer

ICG

indocyanine green

MHC

major histocompatibility complex

MMAE

monomethyl auristatin E

MMP

matrix metalloproteinase

NK

cell, natural killer cell

PGA

poly-γ-glutamic acid

TAM

tumor-associated macrophage

VEGF

vascular endothelial growth factor

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

10541_2019_795_MOESM1_ESM.pdf (227 kb)
Supplementary material, approximately 226 KB.

References

  1. 1.
    Rawlings, N. D., Barrett, A. J., Thomas, P. D., Huang, X., Bateman, A., and Finn, R. D. (2018) The MEROPS database of proteolytic enzymes, their substrates and inhibitors in 2017 and a comparison with peptidases in the PANTHER database, Nucleic Acids Res., 46, D624–D632, doi: 10.1093/nar/gkx1134.CrossRefPubMedGoogle Scholar
  2. 2.
    Spira, D., Stypmann, J., Tobin, D. J., Petermann, I., Mayer, C., Hagemann, S., Vasiljeva, O., Gunther, T., Schule, R., Peters, C., and Reinheckel, T. (2007) Cell type-specific functions of the lysosomal protease cathepsin L in the heart, J. Biol. Chem., 282, 37045–37052, doi: 10.1074/jbc.M703447200.CrossRefPubMedGoogle Scholar
  3. 3.
    Boya, P., and Kroemer, G. (2008) Lysosomal membrane permeabilization in cell death, Oncogene, 27, 6434–6451, doi: 10.1038/onc.2008.310.CrossRefPubMedGoogle Scholar
  4. 4.
    Repnik, U., Cesen, M. H., and Turk, B. (2013) The endolysosomal system in cell death and survival, Cold Spring Harb. Perspect. Biol., 5, a008755, doi: 10.1101/csh-perspect.a008755.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Salminen-Mankonen, H., Morko, J., and Vuorio, E. (2007) Role of cathepsin K in normal joints and in the development of arthritis, Curr. Drug Targets, 8, 315–323, doi: 10.2174/138945007779940188.CrossRefPubMedGoogle Scholar
  6. 6.
    Duncan, E. M., Muratore-Schroeder, T. L., Cook, R. G., Garcia, B. A., Shabanowitz, J., Hunt, D. F., and Allis, C. D. (2008) Cathepsin L proteolytically processes histone H3 during mouse embryonic stem cell differentiation, Cell, 135, 284–294, doi: 10.1016/j.cell.2008.09.055.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Sadegh-Nasseri, S., and Kim, A. (2015) MHC class II auto-antigen presentation is unconventional, Front. Immunol., 6, 372, doi: 10.3389/fimmu.2015.00372.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Stoeckle, C., Gouttefangeas, C., Hammer, M., Weber, E., Melms, A., and Tolosa, E. (2009) Cathepsin W expressed exclusively in CD8+ T cells and NK cells, is secreted during target cell killing but is not essential for cytotoxicity in human CTLs, Exp. Hematol., 37, 266–275, doi: 10.1016/j.exphem.2008.10.011.CrossRefPubMedGoogle Scholar
  9. 9.
    Hanahan, D., and Weinberg, R. (2011) Hallmarks of cancer: the next generation, Cell, 144, 646–674, doi: 10.1016/j.cell.2011.02.013.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Chen, F., Zhuang, X., Lin, L., Yu, P., Wang, Y., Shi, Y., Hu, G., and Sun, Y. (2015) New horizons in tumor microenvironment biology: challenges and opportunities, BMC Med., 13, 45, doi: 10.1186/s12916-015-0278-7.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Shiga, K., Hara, M., Nagasaki, T., Sato, T., Takahashi, H., and Takeyama, H. (2015) Cancer-associated fibroblasts: their characteristics and their roles in tumor growth, Cancers (Basel), 7, 2443–2458, doi: 10.3390/cancers7040902.CrossRefGoogle Scholar
  12. 12.
    Maishi, N., and Hida, K. (2017) Tumor endothelial cells accelerate tumor metastasis, Cancer Sci., 108, 1921–1926, doi: 10.1111/cas.13336.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Bruno, A., Focaccetti, C., Pagani, A., Imperatori, A. S., Spagnoletti, M., Rotolo, N., Cantelmo, A. R., Franzi, F., Capella, C., Ferlazzo, G., Mortara, L., Albini, A., and Noonan, D. M. (2013) The proangiogenic phenotype of natural killer cells in patients with non-small cell lung cancer, Neoplasia, 15, 133–142, doi: 10.1593/neo.121758.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Mitchem, J. B., Brennan, D. J., Knolhoff, B. L., Belt, B. A., Zhu, Y., Sanford, D. E., Belaygorod, L., Carpenter, D., Collins, L., Piwnica-Worms, D., Hewitt, S., Udupi, G. M., Gallagher, W. M., Wegner, C., West, B. L., Wang-Gillam, A., Goedegebuure, P., Linehan, D. C., and DeNardo, D. G. (2013) Targeting tumor-infiltrating macrophages decreases tumor-initiating cells, relieves immunosuppression, and improves chemotherapeutic responses, Cancer Res., 73, 1128–1141, doi: 10.1158/0008-5472.CAN-12-2731.CrossRefPubMedGoogle Scholar
  15. 15.
    Franklin, R. A., Liao, W., Sarkar, A., Kim, M. V., Bivona, M. R., Liu, K., Pamer, E. G., and Li, M. O. (2014) The cellular and molecular origin of tumor-associated macrophages, Science, 344, 921–925, doi: 10.1126/science.1252510.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Linde, N., Lederle, W., Depner, S., van Rooijen, N., Gutschalk, C. M., and Mueller, M. M. (2012) Vascular endothelial growth factor-induced skin carcinogenesis depends on recruitment and alternative activation of macrophages, J. Pathol., 227, 17–28, doi: 10.1002/path.3989.CrossRefPubMedGoogle Scholar
  17. 17.
    Su, S., Liu, Q., Chen, J., Chen, J., Chen, F., He, C., Huang, D., Wu, W., Lin, L., Huang, W., Zhang, J., Cui, X., Zheng, F., Li, H., Yao, H., Su, F., and Song, E. (2014) A positive feedback loop between mesenchymal-like cancer cells and macrophages is essential to breast cancer metastasis, Cancer Cell, 25, 605–620, doi: 10.1016/j.ccr.2014. 03.021.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Li, Y., Zheng, Y., Li, T., Wang, Q., Qian, J., Lu, Y., Zhang, M., Bi, E., Yang, M., Reu, F., Yi, Q., and Cai, Z. (2015) Chemokines CCL2, 3, 14 stimulate macrophage bone marrow homing, proliferation, and polarization in multiple myeloma, Oncotarget, 6, 24218–24229, doi: 10.18632/oncotarget.4523.PubMedPubMedCentralGoogle Scholar
  19. 19.
    Olson, O. C., and Joyce, J. A. (2015) Cysteine cathepsin proteases: regulators of cancer progression and therapeutic response, Nat. Rev. Cancer, 15, 712–729, doi: 10.1038/nrc4027.CrossRefPubMedGoogle Scholar
  20. 20.
    Gocheva, V., Wang, H. W., Gadea, B. B., Shree, T., Hunter, K. E., Garfall, A. L., Berman, T., and Joyce, J. A. (2010) IL-4 induces cathepsin protease activity in tumor-associated macrophages to promote cancer growth and invasion, Genes Dev., 24, 241–255, doi: 10.1101/gad.1874010.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Fehrenbacher, N., Bastholm, L., Kirkegaard-Sorensen, T., Rafn, B., Bottzauw, T., Nielsen, C., Weber, E., Shirasawa, S., Kallunki, T., and Jaattela, M. (2008) Sensitization to the lysosomal cell death pathway by oncogene-induced down-regulation of lysosome-associated membrane proteins 1 and 2, Cancer Res., 68, 6623–6633, doi: 10.1158/0008-5472.CAN-08-0463.CrossRefPubMedGoogle Scholar
  22. 22.
    Bannoud, N., Carvelli, F. L., Troncoso, M., Sartor, T., Vargas-Roig, L. M., and Sosa, M. (2018) Cation-dependent mannose-6-phosphate receptor expression and distribution are influenced by estradiol in MCF-7 breast cancer cells, PLoS One, 13, 1–17, doi: 10.1371/journal.pone. 0201844.CrossRefGoogle Scholar
  23. 23.
    Dean, R. A., and Overall, C. M. (2007) Proteomics discovery of metalloproteinase substrates in the cellular context by iTRAQTM labeling reveals a diverse MMP-2 substrate degradome, Mol. Cell. Proteomics, 6, 611–623, doi: 10.1074/mcp.M600341-MCP200.CrossRefPubMedGoogle Scholar
  24. 24.
    Laurent-Matha, V., Huesgen, P. F., Masson, O., Derocq, D., Prebois, C., Gary-Bobo, M., Lecaille, F., Rebiere, B., Meurice, G., Orear, C., Hollingsworth, R. E., Abrahamson, M., Lalmanach, G., Overall, C. M., and Liaudet-Coopman, E. (2012) Proteolysis of cystatin C by cathepsin D in the breast cancer microenvironment, FASEB J., 26, 5172–5181, doi: 10.1096/fj.12-205229.CrossRefPubMedGoogle Scholar
  25. 25.
    Gocheva, V., Zeng, W., Ke, D., Klimstra, D., Reinheckel, T., Peters, C., Hanahan, D., and Joyce, J. A. (2006) Distinct roles for cysteine cathepsin genes in multistage tumorigenesis, Genes Dev., 20, 543–556, doi: 10.1101/gad.1407406.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Guinec, N., Dalet-Fumeron, V., and Pagano, M. (1993) “In vitro” study of basement membrane degradation by the cysteine proteinases, cathepsins B, B-like and L, Biol. Chem., 374, 1135–1146, doi: 10.1515/bchm3.1993.374.7-12.1135.Google Scholar
  27. 27.
    Giusti, I., D’Ascenzo, S., Millimaggi, D., Taraboletti, G., Carta, G., Franceschini, N., Pavan, A., and Dolo, V. (2008) Cathepsin B mediates the pH-dependent proinvasive activity of tumor-shed microvesicles, Neoplasia, 10, 481–488, doi: 10.1593/neo.08178.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Chang, S., Kanasaki, K., Gocheva, V., Blum, G., Harper, J., Moses, A., Shih, S., Nagy, J. A., Joyce, J., Bogyo, M., and Dvorak, H. F. (2009) VEGF-A induces angiogenesis by perturbing the cathepsin–cysteine protease inhibitor balance in venules, causing basement membrane degradation and mother vessel formation, Cancer Res., 69, 4537–4544, doi: 10.1158/0008-5472.CAN-08-4539.VEGF-A.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Jevnikar, Z., Rojnik, M., Jamnik, P., Doljak, B., Fonovic, U. P., and Kos, J. (2013) Cathepsin H mediates the processing of talin and regulates migration of prostate cancer cells, J. Biol. Chem., 288, 2201–2209, doi: 10.1074/jbc.M112.436394.CrossRefPubMedGoogle Scholar
  30. 30.
    Quintanilla-Dieck, M. J., Codriansky, K., Keady, M., Bhawan, J., and Runger, T. M. (2008) Cathepsin K in melanoma invasion, J. Invest. Dermatol., 128, 2281–2288, doi: 10.1038/jid.2008.63.CrossRefPubMedGoogle Scholar
  31. 31.
    Sevenich, L., Bowman, R. L., Mason, S. D., Quail, D. F., Elie, B. T., Brogi, E., Brastianos, P. K., Hahn, W. C., Holsinger, L. J., Massague, J., Leslie, C. S., and Joyce, J. A. (2014) Analysis of tumor- and stroma-supplied proteolytic networks reveals a brain metastasis-promoting role for cathepsin S, Nat. Cell Biol., 16, 876–888, doi: 10.1038/ncb3011.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Pecar Fonovic, U., Jevnikar, Z., Rojnik, M., Doljak, B., Fonovic, M., Jamnik, P., and Kos, J. (2013) Profilin 1 as a target for cathepsin X activity in tumor cells, PLoS One, 8, e53918, doi: 10.1371/journal.pone.0053918.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Wang, J., Chen, L., Li, Y., and Guan, X.-Y. (2011) Overexpression of cathepsin Z contributes to tumor metastasis by inducing epithelial-mesenchymal transition in hepatocellular carcinoma, PLoS One, 6, e24967, doi: 10.1371/journal.pone.0024967.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Akkari, L., Gocheva, V., Kester, J. C., Hunter, K. E., Quick, M. L., Sevenich, L., Wang, H.-W., Peters, C., Tang, L. H., Klimstra, D. S., Reinheckel, T., and Joyce, J. A. (2014) Distinct functions of macrophage-derived and cancer cell-derived cathepsin Z combine to promote tumor malignancy via interactions with the extracellular matrix, Genes Dev., 28, 2134–2150, doi: 10.1101/gad.249599.114.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Small, D. M., Burden, R. E., Jaworski, J., Hegarty, S. M., Spence, S., Burrows, J. F., McFarlane, C., Kissenpfennig, A., McCarthy, H. O., Johnston, J. A., Walker, B., and Scott, C. J. (2013) Cathepsin S from both tumor and tumor-associated cells promote cancer growth and neovascularization, Int. J. Cancer, 133, 2102–2112, doi: 10.1002/ ijc.28238.CrossRefPubMedGoogle Scholar
  36. 36.
    Abboud-Jarrous, G., Atzmon, R., Peretz, T., Palermo, C., Gadea, B. B., Joyce, J. A., and Vlodavsky, I. (2008) Cathepsin L is responsible for processing and activation of proheparanase through multiple cleavages of a linker segment, J. Biol. Chem., 283, 18167–18176, doi: 10.1074/jbc. M801327200.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Kostoulas, G., Lang, A., Nagase, H., and Baici, A. (1999) Stimulation of angiogenesis through cathepsin B inactivation of the tissue inhibitors of matrix metalloproteinases, FEBS Lett., 455, 286–290, doi: S0014-5793(99)00897-2.CrossRefPubMedGoogle Scholar
  38. 38.
    Wang, B., Sun, J., Kitamoto, S., Yang, M., Grubb, A., Chapman, H. A., Kalluri, R., and Shi, G. P. (2006) Cathepsin S controls angiogenesis and tumor growth via matrix-derived angiogenic factors, J. Biol. Chem., 281, 6020–6029, doi: 10.1074/jbc.M509134200.CrossRefPubMedGoogle Scholar
  39. 39.
    Veillard, F., Saidi, A., Burden, R. E., Scott, C. J., Gillet, L., Lecaille, F., and Lalmanach, G. (2011) Cysteine cathepsins S and L modulate anti-angiogenic activities of human endostatin, J. Biol. Chem., 286, 37158–37167, doi: 10.1074/jbc.M111.284869.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Ryschich, E., Lizdenis, P., Ittrich, C., Benner, A., Stahl, S., Hamann, A., Schmidt, J., Knolle, P., Arnold, B., Hammerling, G. J., and Ganss, R. (2006) Molecular fingerprinting and autocrine growth regulation of endothelial cells in a murine model of hepatocellular carcinoma, Cancer Res., 66, 198–211, doi: 10.1158/0008-5472.CAN-05-1636.CrossRefPubMedGoogle Scholar
  41. 41.
    Shree, T., Olson, O. C., Elie, B. T., Kester, J. C., Garfall, A. L., Simpson, K., Bell-Mcguinn, K. M., Zabor, E. C., Brogi, E., and Joyce, J. A. (2011) Macrophages and cathepsin proteases blunt chemotherapeutic response in breast cancer, Genes Dev., 25, 2465–2479, doi: 10.1101/gad. 180331.111.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Bruchard, M., Mignot, G., Derangere, V., Chalmin, F., Chevriaux, A., Vegran, F., Boireau, W., Simon, B., Ryffel, B., Connat, J. L., Kanellopoulos, J., Martin, F., Rebe, C., Apetoh, L., and Ghiringhelli, F. (2013) Chemotherapy-triggered cathepsin B release in myeloid-derived suppressor cells activates the Nlrp3 inflammasome and promotes tumor growth, Nat. Med., 19, 57–64, doi: 10.1038/nm. 2999.CrossRefPubMedGoogle Scholar
  43. 43.
    Mori, T., Miyamoto, T., Yoshida, H., Asakawa, M., Kawasumi, M., Kobayashi, T., Morioka, H., Chiba, K., Toyama, Y., and Yoshimura, A. (2011) IL-1β and TNFα-initiated IL-6-STAT3 pathway is critical in mediating inflammatory cytokines and RANKL expression in inflammatory arthritis, Int. Immunol., 23, 701–712, doi: 10.1093/intimm/dxr077.CrossRefPubMedGoogle Scholar
  44. 44.
    Castino, R., Pace, D., Demoz, M., Gargiulo, M., Ariatta, C., Raiteri, E., and Isidoro, C. (2002) Lysosomal proteases as potential targets for the induction of apoptotic cell death in human neuroblastomas, Int. J. Cancer, 97, 775–779, doi: 10.1002/ijc.10139.CrossRefPubMedGoogle Scholar
  45. 45.
    Storm van’s Gravesande, K., Layne, M. D., Ye, Q., Le, L., Baron, R. M., Perrella, M. A., Santambrogio, L., Silverman, E. S., and Riese, R. J. (2002) IFN regulatory factor-1 regulates IFN-γ-dependent cathepsin S expression, J. Immunol., 168, 4488–4494, doi: 10.4049/jimmunol.168.9.4488.CrossRefPubMedGoogle Scholar
  46. 46.
    Matsumoto, K., Mizoue, K., Kitamura, K., Tse, W. C., Huber, C. P., and Ishida, T. (1999) Structural basis of inhibition of cysteine proteases by E-64 and its derivatives, Biopolymers, 51, 99–107, doi: 10.1002/(SICI)1097-0282(1999)51:1<99::AID-BIP11>3.0.CO;2-R.CrossRefPubMedGoogle Scholar
  47. 47.
    Bell-McGuinn, K. M., Garfall, A. L., Bogyo, M., Hanahan, D., and Joyce, J. A. (2007) Inhibition of cysteine cathepsin protease activity enhances chemotherapy regimens by decreasing tumor growth and invasiveness in a mouse model of multistage cancer, Cancer Res., 67, 7378–7385, doi: 10.1158/0008-5472.CAN-07-0602.CrossRefPubMedGoogle Scholar
  48. 48.
    Zhu, D. M., and Uckun, F. M. (2000) Z-Phe-Gly-NHO-Bz, an inhibitor of cysteine cathepsins, induces apoptosis in human cancer cells, Clin. Cancer Res., 6, 2064–2069.PubMedGoogle Scholar
  49. 49.
    Mihalik, R., Imre, G., Petak, I., Szende, B., and Kopper, L. (2004) Cathepsin B-independent abrogation of cell death by CA-074-OMe upstream of lysosomal breakdown, Cell Death Differ., 11, 1357–1360, doi: 10.1038/sj.cdd.4401493.CrossRefPubMedGoogle Scholar
  50. 50.
    Zeng, G.-Z., Pan, X.-L., Tan, N.-H., Xiong, J., and Zhang, Y.-M. (2006) Natural biflavones as novel inhibitors of cathepsin B and K, Eur. J. Med. Chem., 41, 1247–1252, doi: 10.1016/j.ejmech.2006.06.002.CrossRefPubMedGoogle Scholar
  51. 51.
    Schenker, P., Alfarano, P., Kolb, P., Caflisch, A., and Baici, A. (2008) A double-headed cathepsin B inhibitor devoid of warhead, Protein Sci., 17, 2145–2155, doi: 10.1110/ps.037341.108.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Sosic, I., Mirkovic, B., Turk, S., Stefane, B., Kos, J., and Gobec, S. (2011) Discovery and kinetic evaluation of 6-substituted 4-benzylthio-1,3,5-triazin-2(1H)-ones as inhibitors of cathepsin B, Eur. J. Med. Chem., 46, 4648–4656, doi: 10.1016/j.ejmech.2011.08.005.CrossRefPubMedGoogle Scholar
  53. 53.
    Mirkovic, B., Renko, M., Turk, S., Sosic, I., Jevnikar, Z., Obermajer, N., Turk, D., Gobec, S., and Kos, J. (2011) Novel mechanism of cathepsin B inhibition by antibiotic nitroxoline and related compounds, ChemMedChem, 6, 1351–1356, doi: 10.1002/cmdc.201100098.CrossRefPubMedGoogle Scholar
  54. 54.
    Jiang, H., Taggart, J. E., Zhang, X., Benbrook, D. M., Lind, S. E., and Ding, W.-Q. (2011) Nitroxoline (8-hydroxy-5-nitroquinoline) is more a potent anti-cancer agent than clioquinol (5-chloro-7-iodo-8-quinoline), Cancer Lett., 312, 11–17, doi: 10.1016/j.canlet.2011.06.032.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Shim, J. S., Matsui, Y., Bhat, S., Nacev, B. A., Xu, J., Bhang, H. C., Dhara, S., Han, K. C., Chong, C. R., Pomper, M. G., So, A., and Liu, J. O. (2010) Effect of nitroxoline on angiogenesis and growth of human bladder cancer, J. Natl. Cancer Inst., 102, 1855–1873, doi: 10.1093/jnci/djq457.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Sosic, I., Mirkovic, B., Arenz, K., Stefane, B., Kos, J., and Gobec, S. (2013) Development of new cathepsin B inhibitors: combining bioisosteric replacements and structure-based design to explore the structure–activity relationships of nitroxoline derivatives, J. Med. Chem., 56, 521–533, doi: 10.1021/jm301544x.CrossRefPubMedGoogle Scholar
  57. 57.
    Mitrovic, A., Kljun, J., Sosic, I., Gobec, S., Turel, I., and Kos, J. (2016) Clioquinol–ruthenium complex impairs tumour cell invasion by inhibiting cathepsin B activity, Dalt. Trans., 45, 16913–16921, doi: 10.1039/C6DT02369J.CrossRefGoogle Scholar
  58. 58.
    Jensen, A. B., Wynne, C., Ramirez, G., He, W., Song, Y., Berd, Y., Wang, H., Mehta, A., and Lombardi, A. (2010) The cathepsin K inhibitor odanacatib suppresses bone resorption in women with breast cancer and established bone metastases: results of a 4-week, double-blind, randomized, controlled trial, Clin. Breast Cancer, 10, 452–458, doi: 10.3816/CBC.2010.n.059.CrossRefPubMedGoogle Scholar
  59. 59.
    Duong, L. T., Wesolowski, G. A., Leung, P., Oballa, R., and Pickarski, M. (2014) Efficacy of a cathepsin K inhibitor in a preclinical model for prevention and treatment of breast cancer bone metastasis, Mol. Cancer Ther., 13, 2898–2909, doi: 10.1158/1535-7163.MCT-14-0253.CrossRefPubMedGoogle Scholar
  60. 60.
    Panwar, P., Xue, L., Soe, K., Srivastava, K., Law, S., Delaisse, J.-M., and Bromme, D. (2017) An ectosteric inhibitor of cathepsin K inhibits bone resorption in ovariec-tomized mice, J. Bone Miner. Res., 32, 2415–2430, doi: 10.1002/jbmr.3227.CrossRefPubMedGoogle Scholar
  61. 61.
    Katunuma, N., Tsuge, H., Nukatsuka, M., Asao, T., and Fukushima, M. (2002) Structure-based design of specific cathepsin inhibitors and their application to protection of bone metastases of cancer cells, Arch. Biochem. Biophys., 397, 305–311, doi: 10.1006/abbi.2001.2709.CrossRefPubMedGoogle Scholar
  62. 62.
    Zajc, I., Hreljac, I., and Lah, T. (2006) Cathepsin L affects apoptosis of glioblastoma cells: a potential implication in the design of cancer therapeutics, Anticancer Res., 26, 3357–3364.PubMedGoogle Scholar
  63. 63.
    Nagaraj, N. S., and Zacharias, W. (2007) Cigarette smoke condensate increases cathepsin-mediated invasiveness of oral carcinoma cells, Toxicol. Lett., 170, 134–145, doi: 10.1016/j.toxlet.2007.02.014.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Zheng, X., Chu, F., Chou, P. M., Gallati, C., Dier, U., Mirkin, B. L., Mousa, S. A., and Rebbaa, A. (2009) Cathepsin L inhibition suppresses drug resistance in vitro and in vivo: a putative mechanism, Am. J. Physiol. Physiol., 296, C65-C74, doi: 10.1152/ajpcell.00082.2008.Google Scholar
  65. 65.
    Sudhan, D. R., and Siemann, D. W. (2013) Cathepsin L inhibition by the small molecule KGP94 suppresses tumor microenvironment enhanced metastasis associated cell functions of prostate and breast cancer cells, Clin. Exp. Metastasis, 30, 891–902, doi: 10.1007/s10585-013-9590-9.CrossRefPubMedGoogle Scholar
  66. 66.
    Sudhan, D. R., Pampo, C., Rice, L., and Siemann, D. W. (2016) Cathepsin L inactivation leads to multimodal inhibition of prostate cancer cell dissemination in a preclinical bone metastasis model, Int. J. Cancer, 138, 2665–2677, doi: 10.1002/ijc.29992.CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Zhang, L., Wang, H., Xu, J., Zhu, J., and Ding, K. (2014) Inhibition of cathepsin S induces autophagy and apoptosis in human glioblastoma cell lines through ROS-mediated PI3K/AKT/mTOR/p70S6K and JNK signaling pathways, Toxicol. Lett., 228, 248–259, doi: 10.1016/j.toxlet.2014.05.015.CrossRefPubMedGoogle Scholar
  68. 68.
    Chen, J.-C., Uang, B.-J., Lyu, P.-C., Chang, J.-Y., Liu, K.-J., Kuo, C.-C., Hsieh, H.-P., Wang, H.-C., Cheng, C.-S., Chang, Y.-H., Chang, M. D.-T., Chang, W.-S. W., and Lin, C.-C. (2010) Design and synthesis of α-ketoamides as cathepsin S inhibitors with potential applications against tumor invasion and angiogenesis, J. Med. Chem., 53, 4545–4549, doi: 10.1021/jm100089e.CrossRefPubMedGoogle Scholar
  69. 69.
    Wilkinson, R. D. A., Young, A., Burden, R. E., Williams, R., and Scott, C. J. (2016) A bioavailable cathepsin S nitrile inhibitor abrogates tumor development, Mol. Cancer, 15, 29, doi: 10.1186/s12943-016-0513-7.CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Fonovic, U. P., Mitrovic, A., Knez, D., Jakos, T., Pislar, A., Brus, B., Doljak, B., Stojan, J., Zakelj, S., Trontelj, J., Gobec, S., and Kos, J. (2017) Identification and characterization of the novel reversible and selective cathepsin X inhibitors, Sci. Rep., 7, 11459, doi: 10.1038/s41598-017-11935-1.CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Burden, R. E., Gormley, J. A., Jaquin, T. J., Small, D. M., Quinn, D. J., Hegarty, S. M., Ward, C., Walker, B., Johnston, J. A., Olwill, S. A., and Scott, C. J. (2009) Antibody-mediated inhibition of cathepsin S blocks colorectal tumor invasion and angiogenesis, Clin. Cancer Res., 15, 6042–6051, doi: 10.1158/1078-0432.CCR-09-1262.CrossRefPubMedGoogle Scholar
  72. 72.
    Kwok, H. F., Buick, R. J., Kuehn, D., Gormley, J. A., Doherty, D., Jaquin, T. J., McClurg, A., Ward, C., Byrne, T., Jaworski, J., Leung, K. L., Snoddy, P., McAnally, C., Burden, R. E., Gray, B., Lowry, J., Sermadiras, I., Gruszka, N., Courtenay-Luck, N., Kissenpfennig, A., Scott, C. J., Johnston, J. A., and Olwill, S. A. (2011) Antibody targeting of cathepsin S induces antibody-dependent cellular cytotoxicity, Mol. Cancer, 10, 147, doi: 10.1186/1476-4598-10-147.CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Premzl, A., Zavasnik-Bergant, V., Turk, V., and Kos, J. (2003) Intracellular and extracellular cathepsin B facilitate invasion of MCF-10A neo T cells through reconstituted extracellular matrix in vitro, Exp. Cell Res., 283, 206–214, doi: 10.1016/S0014-4827(02)00055-1.CrossRefPubMedGoogle Scholar
  74. 74.
    Mirkovic, B., Premzl, A., Hodnik, V., Doljak, B., Jevnikar, Z., Anderluh, G., and Kos, J. (2009) Regulation of cathepsin B activity by 2A2 monoclonal antibody, FEBS J., 276, 4739–4751, doi: 10.1111/j.1742-4658.2009.07171.x.CrossRefPubMedGoogle Scholar
  75. 75.
    Ueki, N., Lee, S., Sampson, N. S., and Hayman, M. J. (2013) Selective cancer targeting with prodrugs activated by histone deacetylases and a tumour-associated protease, Nat. Commun., 4, 2735, doi: 10.1038/ncomms3735.CrossRefPubMedGoogle Scholar
  76. 76.
    Xu, Y., Geng, J., An, P., Xu, Y., Huang, J., Lu, W., Liu, S., and Yu, J. (2015) Cathepsin B-sensitive cholesteryl hemisuccinate–gemcitabine prodrug nanoparticles: enhanced cellular uptake and intracellular drug controlled release, RSC Adv., 5, 6985–6992, doi: 10.1039/C4RA13870H.CrossRefGoogle Scholar
  77. 77.
    Tsume, Y., and Amidon, G. L. (2012) The feasibility of enzyme targeted activation for amino acid/dipeptide monoester prodrugs of floxuridine; cathepsin D as a potential targeted enzyme, Molecules, 17, 3672–3689, doi: 10.3390/molecules17043672.CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Chen, Z., Zhang, P., Cheetham, A. G., Moon, J. H., Moxley, J. W., Lin, Y., and Cui, H. (2014) Controlled release of free doxorubicin from peptide–drug conjugates by drug loading, J. Control. Release, 191, 123–130, doi: 10.1016/j.jconrel.2014.05.051.CrossRefPubMedGoogle Scholar
  79. 79.
    Li, N., Li, N., Yi, Q., Luo, K., Guo, C., Pan, D., and Gu, Z. (2014) Amphiphilic peptide dendritic copolymer-doxorubicin nanoscale conjugate self-assembled to enzyme-responsive anti-cancer agent, Biomaterials, 35, 9529–9545, doi: 10.1016/j.biomaterials.2014.07.059.CrossRefPubMedGoogle Scholar
  80. 80.
    Chipman, S. D., Oldham, F. B., Pezzoni, G., and Singer, J. W. (2006) Biological and clinical characterization of paclitaxel poliglumex (PPX, CT-2103), a macromolecular polymer–drug conjugate, Int. J. Nanomed., 1, 375–383.CrossRefGoogle Scholar
  81. 81.
    Kern, J. C., Dooney, D., Zhang, R., Liang, L., Brandish, P. E., Cheng, M., Feng, G., Beck, A., Bresson, D., Firdos, J., Gately, D., Knudsen, N., Manibusan, A., Sun, Y., and Garbaccio, R. M. (2016) Novel phosphate modified cathepsin B linkers: improving aqueous solubility and enhancing payload scope of ADCs, Bioconjug. Chem., 27, 2081–2088, doi: 10.1021/acs.bioconjchem.6b00337.CrossRefPubMedGoogle Scholar
  82. 82.
    Scott, L. J. (2017) Brentuximab vedotin: a review in CD30-positive Hodgkin lymphoma, Drugs, 77, 435–445, doi: 10.1007/s40265-017-0705-5.CrossRefPubMedGoogle Scholar
  83. 83.
    Gebleux, R., Stringhini, M., Casanova, R., Soltermann, A., and Neri, D. (2017) Non-internalizing antibody–drug conjugates display potent anti-cancer activity upon proteolytic release of monomethyl auristatin E in the subendothelial extracellular matrix, Int. J. Cancer, 140, 1670–1679, doi: 10.1002/ijc.30569.CrossRefPubMedGoogle Scholar
  84. 84.
    De la Torre, C., Mondragon, L., Coll, C., Sancenon, F., Marcos, M. D., Martinez-Manez, R., Amoros, P., Perez-Paya, E., and Orzaez, M. (2014) Cathepsin B-induced controlled release from peptide-capped mesoporous silica nanoparticles, Chemistry, 20, 15309–15314, doi: 10.1002/chem.201404382.CrossRefPubMedGoogle Scholar
  85. 85.
    Tarassoli, S. P., de Pinillos Bayona, A. M., Pye, H., Mosse, C. A., Callan, J. F., MacRobert, A., McHale, A. P., and Nomikou, N. (2017) Cathepsin B-degradable, NIR-responsive nanoparticulate platform for target-specific cancer therapy, Nanotechnology, 28, 055101, doi: 10.1088/1361-6528/28/5/055101.CrossRefPubMedGoogle Scholar
  86. 86.
    Kos, J., Obermajer, N., Doljak, B., Kocbek, P., and Kristl, J. (2009) Inactivation of harmful tumour-associated proteolysis by nanoparticulate system, Int. J. Pharm., 381, 106–112, doi: 10.1016/j.ijpharm.2009.04.037.CrossRefPubMedGoogle Scholar
  87. 87.
    Whitley, M. J., Cardona, D. M., Lazarides, A. L., Spasojevic, I., Ferrer, J. M., Cahill, J., Lee, C.-L., Snuderl, M., Blazer, D. G., Hwang, E. S., Greenup, R. A., Mosca, P. J., Mito, J. K., Cuneo, K. C., Larrier, N. A., O’ Reilly, E. K., Riedel, R. F., Eward, W. C., Strasfeld, D. B., Fukumura, D., Jain, R. K., Lee, W. D., Griffith, L. G., Bawendi, M. G., Kirsch, D. G., and Brigman, B. E. (2016) A mouse-human phase 1 co-clinical trial of a protease-activated fluorescent probe for imaging cancer, Sci. Transl. Med., 8, 320ra4, doi: 10.1126/scitranslmed.aad0293.CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Withana, N. P., Ma, X., McGuire, H. M., Verdoes, M., van der Linden, W. A., Ofori, L. O., Zhang, R., Li, H., Sanman, L. E., Wei, K., Yao, S., Wu, P., Li, F., Huang, H., Xu, Z., Wolters, P. J., Rosen, G. D., Collard, H. R., Zhu, Z., Cheng, Z., and Bogyo, M. (2016) Non-invasive imaging of idiopathic pulmonary fibrosis using cathepsin protease probes, Sci. Rep., 6, 19755, doi: 10.1038/srep19755.CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Poreba, M., Rut, W., Vizovisek, M., Groborz, K., Kasperkiewicz, P., Finlay, D., Vuori, K., Turk, D., Turk, B., Salvesen, G., and Drag, M. (2018) Selective imaging of cathepsin L in breast cancer by fluorescent activity-based probes, Chem. Sci., 9, 2113–2129, doi: 10.1039/c7sc04303a.CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Kramer, L., Renko, M., Zavrsnik, J., Turk, D., Seeger, M., Vasiljeva, O., Grutter, M., Turk, V., and Turk, B. (2017) Non-invasive in vivo imaging of tumour-associated cathepsin B by a highly selective inhibitory DARPin, Theranostics, 7, 2806–2821, doi: 10.7150/thno.19081.CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Chen, X., Lee, D., Yu, S., Kim, G., Lee, S., Cho, Y., Jeong, H., Nam, K. T., and Yoon, J. (2017) In vivo near-infrared imaging and phototherapy of tumors using a cathepsin B-activated fluorescent probe, Biomaterials, 122, 130–140, doi: 10.1016/j.biomaterials.2017.01.020.CrossRefPubMedGoogle Scholar
  92. 92.
    Liu, J., Zhang, L., Lei, J., Shen, H., and Ju, H. (2016) Multifunctional metal-organic framework nanoprobe for cathepsin B-activated cancer cell imaging and chemo-photodynamic therapy multifunctional cathepsin metal-organic framework cell nanoprobe imaging for and B-activated cancer chemo-photodynamic therapy, ACS Appl. Mater. Interfaces, 9, 2150–2158, doi: 10.1021/acsami.6b14446.CrossRefGoogle Scholar
  93. 93.
    Yin, P., Jia, J., Li, J., Song, Y., Zhang, Y., and Chen, F. (2016) ABT-737, a Bcl-2 selective inhibitor, and chloroquine synergistically kill renal cancer cells, Oncol. Res., 24, 65–72, doi: 10.3727/096504016X14587366983838.CrossRefPubMedGoogle Scholar
  94. 94.
    Leto, G., Pizzolanti, G., Tumminello, F. M., and Gebbia, N. (1994) Effects of E-64 (cysteine-proteinase inhibitor) and pepstatin (aspartyl-proteinase inhibitor) on metastasis formation in mice with mammary and ovarian tumors, In vivo, 8, 231–236.PubMedGoogle Scholar
  95. 95.
    Navab, R., Mort, J., and Brodt, P. (1997) Inhibition of carcinoma cell invasion and liver metastases formation by the cysteine proteinase inhibitor E-64, Clin. Exp. Metastasis, 15, 121–129, doi: 10.1023/A:1018496625936.CrossRefPubMedGoogle Scholar
  96. 96.
    Wilder, C. L., Walton, C., Watson, V., Stewart, F. A. A., Johnson, J., Peyton, S. R., Payne, C. K., Odero-Marah, V., and Platt, M. O. (2016) Differential cathepsin responses to inhibitor-induced feedback: E-64 and cystatin C elevate active cathepsin S and suppress active cathepsin L in breast cancer cells, Int. J. Biochem. Cell Biol., 79, 199–208, doi: 10.1016/j.biocel.2016.08.030.CrossRefPubMedPubMedCentralGoogle Scholar
  97. 97.
    Schurigt, U., Sevenich, L., Vannier, C., Gajda, M., Schwinde, A., Werner, F., Stahl, A., von Elverfeldt, D., Becker, A.-K., Bogyo, M., Peters, C., and Reinheckel, T. (2008) Trial of the cysteine cathepsin inhibitor JPM-OEt on early and advanced mammary cancer stages in the MMTV-PyMT-transgenic mouse model, Biol. Chem., 389, 1067–1074, doi: 10.1515/BC.2008.115.CrossRefPubMedGoogle Scholar
  98. 98.
    Zhu, D.-M., and Uckun, F. M. (2000) Cathepsin inhibition induces apoptotic death in human leukemia and lymphoma cells, Leuk. Lymphoma, 39, 343–354, doi: 10.3109/10428190009065834.CrossRefPubMedGoogle Scholar
  99. 99.
    Withana, N. P., Blum, G., Sameni, M., Slaney, C., Anbalagan, A., Olive, M. B., Bidwell, B. N., Edgington, L., Wang, L., Moin, K., Sloane, B. F., Anderson, R. L., Bogyo, M. S., and Parker, B. S. (2012) Cathepsin B inhibition limits bone metastasis in breast cancer, Cancer Res., 72, 1199–1209, doi: 10.1158/0008-5472.CAN-11-2759.CrossRefPubMedPubMedCentralGoogle Scholar
  100. 100.
    Gillet, L., Roger, S., Besson, P., Lecaille, F., Gore, J., Bougnoux, P., Lalmanach, G., and Le Guennec, J.-Y. (2009) Voltage-gated sodium channel activity promotes cysteine cathepsin-dependent invasiveness and colony growth of human cancer cells, J. Biol. Chem., 284, 8680–8691, doi: 10.1074/jbc.M806891200.CrossRefPubMedPubMedCentralGoogle Scholar
  101. 101.
    Klose, A., Zigrino, P., Dennhofer, R., Mauch, C., and Hunzelmann, N. (2006) Identification and discrimination of extracellularly active cathepsins B and L in high-invasive melanoma cells, Anal. Biochem., 353, 57–62, doi: 10.1016/ j.ab.2006.01.037.CrossRefPubMedGoogle Scholar
  102. 102.
    Mitrovic, A., Sosic, I., Kos, S., Tratar, U. L., Breznik, B., Kranjc, S., Mirkovic, B., Gobec, S., Lah, T., Sersa, G., and Kos, J. (2017) Addition of 2-(ethylamino)acetonitrile group to nitroxoline results in significantly improved antitumor activity in vitro and in vivo, Oncotarget, 8, 59136–59147, doi: 10.18632/oncotarget.19296.CrossRefPubMedPubMedCentralGoogle Scholar
  103. 103.
    Chavarria, G. E., Horsman, M. R., Arispe, W. M., Kumar, G. D. K., Chen, S.-E., Strecker, T. E., Parker, E. N., Chaplin, D. J., Pinney, K. G., and Trawick, M. L. (2012) Initial evaluation of the antitumour activity of KGP94, a functionalized benzophenone thiosemicarbazone inhibitor of cathepsin L, Eur. J. Med. Chem., 58, 568–572, doi: 10.1016/j.ejmech.2012.10.039.CrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • A. I. Petushkova
    • 1
  • L. V. Savvateeva
    • 1
  • D. O. Korolev
    • 2
  • A. A. ZamyatninJr.
    • 1
    • 3
    Email author
  1. 1.Institute of Molecular MedicineSechenov First Moscow State Medical UniversityMoscowRussia
  2. 2.Institute of Uronephrology and Human Reproductive HealthSechenov First Moscow State Medical UniversityMoscowRussia
  3. 3.Belozersky Institute of Physico-Chemical BiologyLomonosov Moscow State UniversityMoscowRussia

Personalised recommendations