Advertisement

Biochemistry (Moscow)

, Volume 84, Issue 7, pp 720–728 | Cite as

Immunotherapeutic Approaches for the Treatment of Colorectal Cancer

  • E. V. AbakushinaEmail author
  • Yu. V. Gelm
  • I. A. Pasova
  • A. V. Bazhin
Review

Abstract

Colorectal cancer (CRC) originating from the cells of the colon or rectum has a high mortality rate worldwide. Numerous attempts have been made to raise the overall survival rates of CRC patients. It is well-known that the development of malignant neoplasms is accompanied by suppression of the immune system, which is likely the cause for the failure of standard treatment methods. Immune response has long been an issue of great interest in cancer therapy and anti-tumor immunity that consider the development of immunotherapeutic antitumor methods resulting in the immune system activation as an important issue. This review discusses main immunotherapeutic approaches available for the CRC treatment.

Keywords

colorectal cancer (CRC) immunotherapy checkpoint inhibition programmed death 1 (PD-1) adoptive cell immunotherapy 

Abbreviations

ACT

adoptive cell immunotherapy

CAR T cell

T cell with chimeric antigen receptor

CEA

carcinoembryonic antigen

CRC

colorectal cancer

DC

dendritic cell

ICPI

immune checkpoint inhibitor

TCR

high-avidity T-cell receptor

TIL

tumor-infiltrating lymphocyte

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    World Health Organization, International Agency for Research on Cancer. GLOBOCAN 2012: Estimated cancer incidence, mortality, and prevalence worldwide in 2012. Cancer fact sheets (http://globocan.iarc.fr/Pages/fact_sheets_cancer.aspx), Accessed June 5, 2018.Google Scholar
  2. 2.
    Kaprin, A. D., Starinskii, V. V., and Petrova, G. V. (eds.) (2017) Occurrence of Cancer in Russia in 2017: Morbidity and Mortality [in Russian], Gertsen Moscow Research Oncology Institute, Moscow.Google Scholar
  3. 3.
    Raskov, H., Pommergaard, H. C., Burcharth, J., and Rosenberg, J. (2014) Colorectal carcinogenesis-update and perspectives, World J. Gastroenterol., 20, 18151–18164; doi: 10.3748/wjg.v20.i48.18151.CrossRefGoogle Scholar
  4. 4.
    Wang, Q., and Wu, X. (2017) Primary and acquired resistance to PD-1/PD-L1 blockade in cancer treatment, Int. Immunopharmacol., 46, 210–219; doi: 10.1016/j.intimp. 2017.03.015.CrossRefGoogle Scholar
  5. 5.
    Nowicki, T. S., Hu-Lieskovan, S., and Ribas, A. (2018) Mechanisms of resistance to PD-1 and PD-L1 blockade, Cancer J., 24, 47–53; doi: 10.1097/PPO.0000000000000303.CrossRefGoogle Scholar
  6. 6.
    Seow, H. F., Yip, W. K., and Fifis, T. (2016) Advances in targeted and immunobased therapies for colorectal cancer in the genomic era, OncoTargets Ther., 9, 1899–1920; doi: 10.2147/OTT.S95101.CrossRefGoogle Scholar
  7. 7.
    Grothey, A., Flick, E. D., Cohn, A. L., Bekaii-Saab, T. S., Bendell, J. C., Kozloff, M., Roach, N., Mun, Y., Fish, S., and Hurwitz Bevacizumab, H. I. (2014) Exposure beyond first disease progression in patients with metastatic colorec-tal cancer: analyses of the ARIES observational cohort study, Pharmacoepidemiol. Drug Saf., 23, 726–734; doi: 10.1002/pds.3633.CrossRefGoogle Scholar
  8. 8.
    Marmol, I., Sanchez-de-Diego, C., Pradilla Dieste, A., Cerrada, E., and Rodriguez Yoldi, M. J. (2017) Colorectal carcinoma: a general overview and future perspectives in colorectal cancer, Int. J. Mol. Sci., 18, 197; doi: 10.3390/ijms18010197.Google Scholar
  9. 9.
    Rezaeeyan, H., Hassani, S. N., Barati, M., Shahjahani, M., and Saki, N. (2017) PD-1/PD-L1 as a prognostic factor in leukemia, J. Hematopathol., 10, 17–24; doi: 10.1007/s12308-017-0293-z.CrossRefGoogle Scholar
  10. 10.
    Gianchecchi, E., Delfino, D. V., and Fierabracci, A. (2013) Recent insights into the role of the PD-1/PD-L1 pathway in immunological tolerance and autoimmunity, Autoimmun. Rev., 12, 1091–1100; doi: 10.1016/j.autrev. 2013.05.003.CrossRefGoogle Scholar
  11. 11.
    Kamphorst, A. O., Wieland, A., Nasti, T., Yang, S., Zhang, R., Barber, D. L., Konieczny, B. T., Daugherty, C. Z., Koenig, L., Yu, K., Sica, G. L., Sharpe, A. H., Freeman, G. J., Blazar, B. R., Turka, L. A., Owonikoko, T. K., Pillai, R. N., Ramalingam, S. S., Araki, K., and Ahmed, R. (2017) Rescue of exhausted CD8 T cells by PD-1-targeted therapies is CD28-dependent, Science, 355, 1423–1427; doi: 10.1126/science.aaf0683.CrossRefGoogle Scholar
  12. 12.
    Hoos, A., Ibrahim, R., Korman, A., Abdallah, K., Berman, D., Shahabi, V., Chin, K., Canetta, R., and Humphrey, R. (2010) Development of ipilimumab: contribution to a new paradigm for cancer immunotherapy, Semin. Oncol., 37, 533–546; doi: 10.1053/j.seminoncol.2010.09.015.CrossRefGoogle Scholar
  13. 13.
    Pardoll, D. M. (2012) The blockade of immune checkpoints in cancer immunotherapy, Nat. Rev. Cancer, 12, 252–264; doi: 10.1038/nrc3239.CrossRefGoogle Scholar
  14. 14.
    Xu-Monette, Z. Y., Zhang, M., Li, J., and Young, K. H. (2017) PD-1/PD-L1 blockade: have we found the key to unleash the antitumor immune response? Front. Immunol., 8, 1597; doi: 10.3389/fimmu.2017.01597.CrossRefGoogle Scholar
  15. 15.
    Volkov, N. M. (2018) Immunotherapy, Pract. Oncol., 19, 226–235; doi: 10.31917/1903226.CrossRefGoogle Scholar
  16. 16.
    Yaghoubi, N., Soltani, A., Ghazvini, K., Hassanian, S. M., and Hashemy, S. I. (2019) PD-1/PD-L1 blockade as a novel treatment for colorectal cancer, Biomed. Pharmacother., 110, 312–318; doi: 10.1016/j.biopha.2018. 11.105.CrossRefGoogle Scholar
  17. 17.
    Brahmer, J. R., Drake, C. G., Wollner, I., Powderly, J. D., Picus, J., Sharfman, W. H., Stankevich, E., Pons, A., Salay, T. M., McMiller, T. L., Gilson, M. M., Wang, C., Selby, M., Taube, J. M., Anders, R., Chen, L., Korman, A. J., Pardoll, D. M., Lowy, I., and Topalian, S. L. (2010) Phase I study of single-agent anti-programmed death-1 (MDX-1106) in refractory solid tumors: safety, clinical activity, pharmacodynamics, and immunologic correlates, J. Clin. Oncol., 28, 3167–3175; doi: 10.1200/JCO.2009.26.7609.CrossRefGoogle Scholar
  18. 18.
    Overman, M. J., McDermott, R., Leach, J. L., Lonardi, S., Lenz, H. J., Morse, M. A., Desai, J., Hill, A., Axelson, M., and Moss, R. A. (2017) Nivolumab in patients with metastatic DNA mismatch repair-deficient or microsatel-lite instability-high colorectal cancer (CheckMate 142): an open-label, multicentre, phase 2 study, Lancet Oncol., 18, 1182–1191; doi: 10.1016/S1470-2045(17)30422-9.CrossRefGoogle Scholar
  19. 19.
    O’Neil, B. H., Wallmark, J. M., Lorente, D., Elez, E., Raimbourg, J., Gomez-Roca, C., Ejadi, S., Piha-Paul, S. A., Stein, M. N., and Abdul Razak, R. A. (2017) Safety and antitumor activity of the anti-PD-1 antibody pem-brolizumab in patients with advanced colorectal carcinoma, PLoS One, 12, e0189848; doi: 10.1371/journal.pone. 0189848.Google Scholar
  20. 20.
    Brahmer, J. R., Tykodi, S. S., Chow, L. Q., Hwu, W. J., Topalian, S. L., Hwu, P., Drake, C. G., Camacho, L. H., Kauh, J., and Odunsi, K. (2012) Safety and activity of anti-PD-L1 antibody in patients with advanced cancer, N. Engl. J. Med., 366, 2455–2465; doi: 10.1056/NEJMoa1200694.CrossRefGoogle Scholar
  21. 21.
    Zhong, X., Tumang, J. R., Gao, W., Bai, C., and Rothstein, T. L. (2007) PD-L2 expression extends beyond dendritic cells/macrophages to B1 cells enriched for V(H)11/V(H)12 and phosphatidylcholine binding, Eur. J. Immunol., 37, 2405–2410; doi: 10.1002/eji.200737461.CrossRefGoogle Scholar
  22. 22.
    Wang, H., Yao, H., Li, C., Liang, L., Zhang, Y., Shi, H., Zhou, C., Chen, Y., Fang, J. Y., and Xu, J. (2017) PD-L2 expression in colorectal cancer: independent prognostic effect and targetability by deglycosylation, Oncoimmunology, 6, 7; doi: 10.1080/2162402X.2017. 1327494.Google Scholar
  23. 23.
    Arora, S. P., and Mahalingam, D. (2018) Immunotherapy in colorectal cancer: for the select few or all, J. Gastrointest. Oncol., 9, 170–179; doi: 10.21037/jgo.2017.06.10.CrossRefGoogle Scholar
  24. 24.
    Seledtsova, G. V., Shishkov, A. A., Kaschenko, E. A., and Seledtsov, V. I. (2016) Xenogeneic cell-based vaccine therapy for colorectal cancer: safety, association of clinical effects with vaccine-induced immune responses, Biomed. Pharmacother., 83, 1247–1252; doi: 10.1016/j.biopha. 2016.08.050.CrossRefGoogle Scholar
  25. 25.
    Bilusic, M., Heery, C. R., Arlen, P. M., Rauckhorst, M., Apelian, D., Tsang, K. Y., Tucker, J. A., Jochems, C., Schlom, J., Gulley, J. L., and Madan, R. A. (2014) Phase I trial of a recombinant yeast-CEA vaccine (GI-6207) in adults with metastatic CEA-expressing carcinoma, Cancer Immunol. Immunother., 63, 225–234; doi: 10.1007/s00262-013-1505-8.CrossRefGoogle Scholar
  26. 26.
    Markov, O. V., Mironova, N. L., Vlasov, V. V., and Zenkova, M. A. (2017) Anti-tumor vaccines based on dendritic cells: from animal model experiments to clinical trials, Acta Naturae, 9, 29–41.CrossRefGoogle Scholar
  27. 27.
    Lesterhuis, W. J., De Vries, I. J., Schreibelt, G., Schuurhuis, D. H., Aarntzen, E. H., De Boer, A., Scharenborg, N. M., Van De Rakt, M., Hesselink, E. J., Figdor, C. G., Adema, G. J., and Punt, C. J. (2010) Immunogenicity of dendritic cells pulsed with CEA peptide or transfected with CEA mRNA for vaccination of colorec-tal cancer patients, Anticancer Res., 30, 5091–5097.Google Scholar
  28. 28.
    Zhou, X., Mo, X., Qiu, J., Zhao, J., Wang, S., Zhou, C., Su, Y., Lin, Z., and Ma, H. (2018) Chemotherapy combined with dendritic cell vaccine and cytokine-induced killer cells in the treatment of colorectal carcinoma: a meta-analysis, Cancer Manag. Res., 10; doi: 10.2147/CMAR.S173201.Google Scholar
  29. 29.
    Fan, J., Shang, D., Han, B., Song, J., Chen, H., and Yang, J. M. (2018) Adoptive cell transfer: is it a promising immunotherapy for colorectal cancer, Theranostics, 8; doi: 10.7150/thno.29035.Google Scholar
  30. 30.
    Abakushina, E. V., and Kozlov, I. G. (2016) Immunotherapy with the natural killer cells in the treatment of cancer, Rus. J. Immunol., 10, 131–142 (Russ.).Google Scholar
  31. 31.
    Borobova, E. A., and Zheravin, A. A. (2018) Natural killer cells in immunotherapy for cancer, Siberian J. Oncol., 17, 97–104; doi: 10.21294/1814-4861-2018-17-6-97-104.CrossRefGoogle Scholar
  32. 32.
    Zhen, Y. H., Liu, X. H., Yang, Y., Li, B., Tang, J. L., Zeng, Q. X., Hu, J., Zeng, X. N., Zhang, L., Wang, Z. J., Li, X. Y., Ge, H. X., Winqvist, O., Hu, P. S., and Xiu, J. (2015) Phase I/II study of adjuvant immunotherapy with sentinel lymph node T lymphocytes in patients with colorectal cancer, Cancer Immunol. Immunother., 64, 1083–1093; doi: 10.1007/s00262-015-1715-3.CrossRefGoogle Scholar
  33. 33.
    Parkhurst, M. R., Yang, J. C., Langan, R. C., Dudley, M. E., Nathan, D. A., Feldman, S. A., Davis, J. L., Morgan, R. A., Merino, M. J., Sherry, R. M., Hughes, M. S., Kammula, U. S., Phan, G. Q., Lim, R. M., Wank, S. A., Restifo, N. P., Robbins, P. F., Laurencot, C. M., and Rosenberg, S. A. (2011) T cells targeting carcinoembryon-ic antigen can mediate regression of metastatic colorectal cancer but induce severe transient colitis, Mol. Ther., 19, 620–626; doi: 10.1038/mt. 2010.272.CrossRefGoogle Scholar
  34. 34.
    Morgan, R. A., Yang, J. C., Kitano, M., Dudley, M. E., Laurencot, C. M., and Rosenberg, S. A. (2010) Case report of a serious adverse event following the administration of T cells transduced with a chimeric antigen receptor recognizing ERBB2, Mol. Ther., 18, 843–851; doi: 10.1038/mt.2010.24.CrossRefGoogle Scholar
  35. 35.
    Zhang, L., Mu, Y., Zhang, A., Xie, J., Chen, S., Xu, F., Wang, W., Zhang, Y., Ren, S., and Zhou, C. (2017) Cytokine-induced killer cells/dendritic cells-cytokine induced killer cells immunotherapy combined with chemotherapy for treatment of colorectal cancer in China: a meta-analysis of 29 trials involving 2610 patients, Oncotarget, 8, 45164–45177; doi: 10.18632/oncotarget.16665.Google Scholar
  36. 36.
    Kaleta-Richter, M., Kawczyk-Krupka, A., Aebisher, D., Bartusik-Aebisher, D., Czuba, Z., and Cieslar, G. (2019) The capabilities and hope of the combination the new forms of personalized colon cancer treatment - immunotherapy and immune photodynamic therapy, Photodiagn. Photodyn. Ther., 25, 253–258; doi: 10.1016/j.pdpdt.2019.01.004.CrossRefGoogle Scholar
  37. 37.
    Anokhin, Yu. N., and Abakushina, E. V. (2016) Tumor-specific immune-response after photodynamic therapy, Med. Immunol. (Russia), 18, 405–416 (In Russ.); doi: 10.15789/1563-0625-2016-5-405-416.CrossRefGoogle Scholar
  38. 38.
    Yoshida, Y., Naito, M., Yamada, T., Aisu, N., Kojima, D., Mera, T., Tanaka, T., Naito, K., Yasumoto, K., Kamigaki, T., Gotoh, S., Kodama, S., Yamashita, Y., and Hasegawa, S. (2017) Clinical study on medical value of adoptive immunotherapy with chemotherapy for stage IV colorectal cancer (COMVI study), Anticancer Res., 37, 3941–3946; doi: 10.21873/anticanres.11777.Google Scholar
  39. 39.
    Abakushina, E. V., Pasova, I. A., Pochuev, T. P., Evdokimov, L. V., Berdov, B. A., and Kaprin, A. D. (2017) Adoptive immunotherapy with activated lymphocytes in complex therapy of colon cancer patients, Ros. Bioterapevt. Zh., 16, S1.Google Scholar
  40. 40.
    Reichman, H., Itan, M., Rozenberg, P., Yarmolovski, T., Brazowski, E., Varol, C., Gluck, N., Shapira, S., Arber, N., Qimron, U., Karo-Atar, D., Lee, J. J., and Munitz, A. (2019) Activated eosinophils exert antitumorigenic activities in colorectal cancer, Cancer Immunol. Res., 7, 388–400; doi: 10.1158/2326-6066.CIR-18-0494.CrossRefGoogle Scholar
  41. 41.
    Fritz, J., Karakhanova, S., Brecht, R., Schwaab, K., Nachtigall, I., Werner, J., and Bazhin, A. V. (2015) In vitro immunomodulatory properties of gemcitabine alone and in combination with interferon-alpha, Immunol. Lett., 168, 111–119; doi: 10.1016/j.imlet.2015.09.017.CrossRefGoogle Scholar
  42. 42.
    Yang, J. L., Qu, X. J., Russell, P. J., and Goldstein, D. (2005) Interferon-alpha promotes the anti-proliferative effect of gefitinib (ZD 1839) on human colon cancer cell lines, Oncology, 69, 224–238; doi: 10.1159/000088070.CrossRefGoogle Scholar
  43. 43.
    Kit, O. I., Maksimov, A. Y., Novikova, I. A., Grankina, A. O., Zlatnik, E. Y., Kirichenko, E. Y., and Filippova, S. Y. (2017) Colorectal cancer immunotherapy: current state and prospects (review), CTM, 9, 138–148; doi: 10.17691/stm2017.9.3.18.Google Scholar
  44. 44.
    Correale, P., Botta, C., Rotundo, M. S., Guglielmo, A., Conca, R., Licchetta, A., Pastina, P., Bestoso, E., Ciliberto, D., Cusi, M. G., Fioravanti, A., Guidelli, G. M., Bianco, M. T., Misso, G., Martino, E., Caraglia, M., Tassone, P., Mini, E., Mantovani, G., Ridolfi, R., Pirtoli, L., and Tagliaferri, P. (2014) Gemcitabine, oxaliplatin, lev-ofolinate, 5-fluorouracil, granulocyte-macrophage colony-stimulating factor, and interleukin-2 (GOLFIG) versus FOLFOX chemotherapy in metastatic colorectal cancer patients: the GOLFIG-2 multicentric open-label randomized phase III trial, Immunotherapy, 37, 26–35; doi: 10.1097/CJI.0000000000000004.CrossRefGoogle Scholar
  45. 45.
    Goloshchapov, R. S., Kokov, L. S., Vishnevskiy, V. A., Ionkin, D. A., and Elagina, L. V. (2003) Regional arterial chemoembolization and chemoimmunoembolization in complex treatment of colon cancer with liver metastases, Khirurgiya, 7, 66–71.Google Scholar
  46. 46.
    Yu, P., Steel, J. C., Zhang, M., Morris, J. C., and Waldmann, T. A. (2010) Simultaneous blockade of multiple immune inhibitory checkpoints enhance anti-tumor activity mediated by interleukin-15 in a murine metastatic colon carcinoma model, Clin. Cancer Res., 16, 6019–6028; doi: 10.1158/1078-0432.CCR-10-1966.CrossRefGoogle Scholar
  47. 47.
    Horn, L. A., Long, T. M., Atkinson, R. V., Clements, V., and Ostrand-Rosenberg, S. (2018) Soluble CD80 protein delays tumor growth and promotes tumor-infiltrating lymphocytes, Cancer Immunol. Res., 6, 59–68; doi: 10.1158/2326-6066.CIR-17-0026.CrossRefGoogle Scholar
  48. 48.
    Netesov, S. V., Kochneva, G. V., Loktev, V. B., Svyatchenko, V. A., Sergeev, A. N., Ternovoi, V. A., Tikunova, N. V., Shishkina, L. N., and Chumakov, P. M. (2011) Oncolytic viruses: advances and problems, Med. Alfavit, 3, 26–33.Google Scholar
  49. 49.
    Geevarghese, S. K., Geller, D. A., de Haan, H. A., Horer, M., Knoll, A. E., Mescheder, A., Nemunaitis, J., Reid, T. R., Sze, D. Y., Tanabe, K. K., and Tawfik, H. (2010) Phase I/II study of oncolytic herpes simplex virus NV1020 in patients with extensively pretreated refractory colorectal cancer metastatic to the liver, Hum. Gene Ther., 21, 1119–1128; doi: 10.1089/hum.2010.020.CrossRefGoogle Scholar
  50. 50.
    Manservigi, R., Argnani, R., and Marconi, P. (2010) HSV recombinant vectors for gene therapy, Open Virol. J., 4, 123–156; doi: 10.2174/1874357901004010123.Google Scholar
  51. 51.
    Woller, N., Gurlevik, E., Fleischmann-Mundt, B., Schumacher, A., Knocke, S., Kloos, A. M., Saborowski, M., Geffers, R., Manns, M. P., Wirth, T. C., Kubicka, S., and Kuhnel, F. (2015) Viral infection of tumors overcomes resistance to PD-1-immunotherapy by broadening neoantigenome-directed T-cell responses, Mol. Ther., 23, 1630–1640; doi: 10.1038/mt.2015.115.CrossRefGoogle Scholar
  52. 52.
    Sharma, K. K., Kalyani, I. H., Mohapatra, J., Patel, S. D., Patel, D. R., Vihol, P. D., Chatterjee, A., Patel, D. R., and Vyas, B. (2017) Evaluation of the oncolytic potential of R2B Mukteshwar vaccine strain of Newcastle disease virus (NDV) in a colon cancer cell line (SW-620), Arch. Virol., 162, 2705–2713; doi: 10.1007/s00705-017-3411-4.CrossRefGoogle Scholar
  53. 53.
    Rusch, T., Bayry, J., Werner, J., Shechenko, I., and Bazhin, A. V. (2018) Immunotherapy as an option for cancer treatment, Arch. Immunol. Ther. Exp., 66, 89–96; doi: 10.1007/s00005-017-0491-5.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • E. V. Abakushina
    • 1
    Email author
  • Yu. V. Gelm
    • 1
  • I. A. Pasova
    • 1
  • A. V. Bazhin
    • 2
  1. 1.Tsyb Medical Radiological Research Center, Branch of the National Medical Research Radiological CenterMinistry of Health of the Russian FederationObninsk, Kaluga RegionRussia
  2. 2.Ludwig-Maximilians-University MunichMunichGermany

Personalised recommendations