Biochemistry (Moscow)

, Volume 84, Issue 7, pp 711–719 | Cite as

T-Cell Engagers Based Bioassay for Evaluation of PD-1/PD-L1 Inhibitors Activity

  • A. N. Doronin
  • A. A. Gordeev
  • A. E. Kozlov
  • Ya. A. Smirnova
  • M. Yu. Puchkova
  • V. M. Ekimova
  • Yu. I. Basovskiy
  • V. V. SolovyevEmail author


PD-1/PD-L1-based therapy has been named a revolution in cancer treatment. By the end of 2018, more than 100 anti-PD-1 and anti-PD-L1 antibodies were in various stages of development, and more than 2000 clinical trials with their use have been registered. Characterization of such antibodies requires a bioassay to determine their biological activity. In this study, we developed a cell-based bioassay for analyzing the activity of anti-PD-1 and anti-PD-L1 antibodies. We chose reporter system consisting of two cell lines and compared several approaches for activation of effector cell line based on superantigens, soluble anti-CD3 antibodies, transmembrane anti-CD3 antibodies, chimeric antigenic receptors (CARs) and bispecific T-cell engager antibodies. The bispecific T-cell engager antibodies offer several advantages over the other approaches. We characterized the bioassay and demonstrated its applicability for analyzing the activity of anti-PD-1 and anti-PD-L1 antibodies. The proposed bioassay can be useful in the development of new therapeutic agents and methods for their characterization.


bioassay PD-1 PD-L1 T-cell engager CAR 



chimeric antigenic receptor


cells, T cells expressing chimeric antigenic receptors


cytotoxic T-lymphocyte-associated protein 4


half maximal effective concentration


firefly luciferase


green fluorescent protein


human epidermal growth factor receptor 2




major histocompatibility complex


nuclear factor of enhancer of the light chain of activated B lymphocytes


nuclear factor of activated T lymphocytes


NFAT transcriptional response element


programmed cell death receptor 1

PD-L1 and PD-L2

ligands of the programmed cell death receptor 1


single-chain variable fragment


staphylococcal enterotoxin B


tumor-associated human antigen


T-cell receptor


transmembrane antibodies against CD3.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Freeman, G. J., Long, A. J., Iwai, Y., Bourque, K., Chernova, T., Nishimura, H., Fitz, L. J., Malenkovich, N., Okazaki, T., Byrne, M. C., Horton, H. F., Fouser, L., Carter, L., Ling, V., Bowman, M. R., Carreno, B. M., Collins, M., Wood, C. R., and Honjo, T. (2000) Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation, J. Exp. Med., 192, 1027–1034. doi: 10.1084/jem.192.7.1027.CrossRefGoogle Scholar
  2. 2.
    Latchman, Y., Wood, C. R., Chernova, T., Chaudhary, D., Borde, M., Chernova, I., Iwai, Y., Long, A. J., Brown, J. A., Nunes, R., Greenfield, E. A., Bourque, K., Boussiotis, V. A., Carter, L. L., Carreno, B. M., Malenkovich, N., Nishimura, H., Okazaki, T., Honjo, T., Sharpe, A. H., and Freeman, G. J. (2001) PD-L2 is a second ligand for PD-1 and inhibits T cell activation, Nat. Immunol., 2, 261–268. doi: 10.1038/85330.CrossRefGoogle Scholar
  3. 3.
    Sheppard, K. A., Fitz, L. J., Lee, J. M., Benander, C., George, J. A., Wooters, J., Qiu, Y., Jussif, J. M., Carter, L. L., Wood, C. R., and Chaudhary, D. (2004) PD-1 inhibits T-cell receptor induced phosphorylation of the ZAP70/CD3zeta signalosome and downstream signaling to PKCtheta, FEBS Lett., 547, 37–41. doi: 10.1016/j.feb- slet.2004.07.083.CrossRefGoogle Scholar
  4. 4.
    Bardhan, K., Anagnostou, T., and Boussiotis, V. A. (2016) The PD1: PD-L1/2 pathway from discovery to clinical implementation, Front. Immunol., 7, 550, doi: 10.3389/fimmu.2016.00550.CrossRefGoogle Scholar
  5. 5.
    Arasanz, H., Gato-Canas, M., Zuazo, M., Ibanez-Vea, M., Breckpot, K., Kochan, G., and Escors, D. (2017) PD1 signal transduction pathways in T cells, Oncotarget, 8, 51936–51945, doi: 10.18632/oncotarget.17232.CrossRefGoogle Scholar
  6. 6.
    Alsaab, H. O., Sau, S., Alzhrani, R., Tatiparti, K., Bhise, K., Kashaw, S. K., and Iyer, A. K. (2017) PD-1 and PD-L1 checkpoint signaling inhibition for cancer immunotherapy: mechanism, combinations, and clinical outcome, Front. Pharmacol., 8, 561, doi: 10.3389/fphar.2017.00561.CrossRefGoogle Scholar
  7. 7.
    Chen, L., and Han, X. (2015) Anti-PD-1/PD-L1 therapy of human cancer: past, present, and future, J. Clin. Invest., 125, 3384–3391. doi: 10.1172/JCI80011.CrossRefGoogle Scholar
  8. 8.
    Iwai, Y., Ishida, M., Tanaka, Y., Okazaki, T., Honjo, T., and Minato, N. (2002) Involvement of PD-L1 on tumor cells in the escape from host immune system and tumor immunotherapy by PD-L1 blockade, Proc. Natl. Acad. Sci. USA, 99, 12293–12297. doi: 10.1073/pnas.192461099.CrossRefGoogle Scholar
  9. 9.
    Rozali, E. N., Hato, S. V., Robinson, B. W., Lake, R. A., and Lesterhuis, W. J. (2012) Programmed death ligand 2 in cancer-induced immune suppression, Clin. Dev. Immunol., 2012, 656340, doi: 10.1155/2012/656340.Google Scholar
  10. 10.
    Ishida, Y., Agata, Y., Shibahara, K., and Honjo, T. (1992) Induced expression of PD-1, a novel member of the immunoglobulin gene superfamily, upon programmed cell death, EMBO J., 11, 3887–3895. doi: 10.1002/j.1460-2075. 1992.tb05481.x.CrossRefGoogle Scholar
  11. 11.
    Gong, J., Chehrazi-Raffle, A., Reddi, S., and Salgia, R. (2018) Development of PD-1 and PD-L1 inhibitors as a form of cancer immunotherapy: a comprehensive review of registration trials and future considerations, J. Immunother. Cancer, 6, 8, doi: 10.1186/s40425-018-0316-z.CrossRefGoogle Scholar
  12. 12.
    Tang, J., Yu, J. X., Hubbard-Lucey, V. M., Neftelinov, S. T., Hodge, J. P., and Lin, Y. (2018) Trial watch: the clinical trial landscape for PD1/PDL1 immune checkpoint inhibitors, Nat. Rev. Drug Discov., 17, 854–855. doi: 10.1038/nrd.2018.210.CrossRefGoogle Scholar
  13. 13.
    Rockville, M. D. (2012) United States Pharmacopeia and National Formulary (USP 35-NF 30), USP Convention, 1032, 5160–5174.Google Scholar
  14. 14.
    Skerka, C., Decker, E. L., and Zipfel, P. F. (1995) A regulatory element in the human interleukin 2 gene promoter is a binding site for the zinc finger proteins Sp1 and EGR-1, J. Biol. Chem., 270, 22500–22506. doi: 10.1074/jbc.270. 38.22500.CrossRefGoogle Scholar
  15. 15.
    Park, J., Takeuchi, A., and Sharma, S. (1996) Characteriza- tion of a new isoform of the NFAT (nuclear factor of activated T cells) gene family member NFATc, J. Biol. Chem., 271, 33705–33716. doi: 10.1074/jbc.271.34. 20914.Google Scholar
  16. 16.
    Hsieh, Y. T., Aggarwal, P., Cirelli, D., Gu, L., Surowy, T., and Mozier, N. M. (2017) Characterization of Fc?RIIIA effector cells used in in vitro ADCC bioassay: comparison of primary NK cells with engineered NK-92 and Jurkat T cells, J. Immunol. Methods, 441, 56–66. doi: 10.1016/j.jim. 2016.12.002.CrossRefGoogle Scholar
  17. 17.
    Jutz, S., Leitner, J., Schmetterer, K., Doel-Perez, I., Majdic, O., Grabmeier-Pfistershammer, K., Paster, W., Huppa, J. B., and Steinberger, P. (2016) Assessment of costimulation and co-inhibition in a triple parameter T cell reporter line: simultaneous measurement of NF-кB, NFAT and AP-1, J. Immunol. Methods, 430, 10–20. doi: 10.1016/j.jim. 2016.01.007.CrossRefGoogle Scholar
  18. 18.
    Pahl, H. L. (1999) Activators and target genes of Rel/NF- kappaB transcription factors, Oncogene, 18, 6853–6866. doi: 10.1038/sj.onc.1203239.CrossRefGoogle Scholar
  19. 19.
    Rao, A., Luo, C., and Hogan, P. G. (1997) Transcription factors of the NFAT family: regulation and function, Annu. Rev. Immunol., 15, 707–747. doi: 10.1146/annurev. immunol.15.1.707.CrossRefGoogle Scholar
  20. 20.
    Vaeth, M., and Feske, S. (2018) NFAT control of immune function: new frontiers for an abiding trooper, F1000Res., 7, 260, doi: 10.12688/f1000research. 13426.1.Google Scholar
  21. 21.
    Abraham, R. T., and Weiss, A. (2004) Jurkat T cells and development of the T-cell receptor signaling paradigm, Nat. Rev. Immunol., 4, 301–308. doi: 10.1038/nri1330.CrossRefGoogle Scholar
  22. 22.
    Mege, D., Di, Bartolo, V., Germain, V., Tuosto, L., Michel, F., and Acuto, O. (1996) Mutation of tyrosines 492/493 in the kinase domain of ZAP-70 affects multiple T-cell receptor signaling pathways, J. Biol. Chem., 271, 32644–32652, doi: 10.1074/jbc.271.51.32644.CrossRefGoogle Scholar
  23. 23.
    Davis, M. M., and Bjorkman, P. J. (1988) T-cell antigen receptor genes and T-cell recognition, Nature, 334, 395–402, doi: 10.1038/334395a0.CrossRefGoogle Scholar
  24. 24.
    Li, H., Llera, A., Malchiodi, E. L., and Mariuzza, R. A. (1999) The structural basis of T cell activation by super- antigens, Annu. Rev. Immunol., 17, 435–466. doi: 10.1146/annurev.immunol.17.1.435.CrossRefGoogle Scholar
  25. 25.
    Tsoukas, C. D., Landgraf, B., Bentin, J., Valentine, M., Lotz, M., Vaughan, J. H., and Carson, D. A. (1985) Activation of resting T lymphocytes by anti-CD3 (T3) anti-bodies in the absence of monocytes, J. Immunol., 135, 1719–1723.Google Scholar
  26. 26.
    Leitner, J., Kuschei, W., Grabmeier-Pfistershammer, K., Woitek, R., Kriehuber, E., Majdic, O., Zlabinger, G., Pickl, W. F., and Steinberger, P. (2010) T cell stimulator cells, an efficient and versatile cellular system to assess the role of costimulatory ligands in the activation of human T cells, J. Immunol. Methods, 362, 131–141. doi: 10.1016/j.jim.2010.09.020.CrossRefGoogle Scholar
  27. 27.
    Cong, M., Cheng, Z. J., Karassina, N., Grailer, J., and Fan, F. (2015) Systems and methods for assessing modulators of immune checkpoints, Patent WIPO, WO2016081854.Google Scholar
  28. 28.
    Wang, L., Yu, C., Yang, Y., Gao, K., and Wang, J. (2017) Development of a robust reporter gene assay to measure the bioactivity of anti-PD-1/anti-PD-L1 therapeutic antibodies, J. Pharm. Biomed. Anal., 145, 447–453. doi: 10.1016/j.jpba.2017.05.011.CrossRefGoogle Scholar
  29. 29.
    Sadelain, M., Brentjens, R., and Riviere, I. (2013) The basic principles of chimeric antigen receptor design, Cancer Discov., 3, 388–398. doi: 10.1158/2159-8290.CD-12-0548.CrossRefGoogle Scholar
  30. 30.
    Irving, B. A., and Weiss, A. (1991) The cytoplasmic domain of the T cell receptor zeta chain is sufficient to couple to receptor-associated signal transduction pathways, Cell, 64, 891–901, doi: 10.1016/0092-8674(91)90314-O.CrossRefGoogle Scholar
  31. 31.
    John, L. B., Devaud, C., Duong, C. P., Yong, C. S., Beavis, P. A., Haynes, N. M., Chow, M. T., Smyth, M. J., Kershaw, M. H., and Darcy, P. K. (2013) Anti-PD-1 antibody thera- py potently enhances the eradication of established tumors by gene-modified T cells, Clin. Cancer Res., 19, 5636–5646. doi: 10.1158/1078-0432.CCR-13-0458.CrossRefGoogle Scholar
  32. 32.
    Nazarian, A. A., Archibeque, I. L., Nguyen, Y. H., Wang, P., Sinclair, A. M., and Powers, D. A. (2015) Characterization of bispecific T-cell Engager (BiTE) antibodies with a high-capacity T-cell dependent cellular cytotoxicity (TDCC) assay, J. Biomol. Screen., 20, 519–527. doi: 10.1177/1087057114561405.CrossRefGoogle Scholar
  33. 33.
    Versteven, M., Van den Bergh, J. M. J., Broos, K., Fujiki, F., Campillo-Davo, D., De Reu, H., Morimoto, S., Lecocq, Q., Keyaerts, M., Berneman, Z., Sugiyama, H., Van Tendeloo, V. F. I., Breckpot, K., and Lion, E. (2018) A versatile T cell-based assay to assess therapeutic antigen- specific PD-1-targeted approaches, Oncotarget, 9, 27797–27808, doi: 10.18632/oncotarget.25591.CrossRefGoogle Scholar
  34. 34.
    Miethke, T., Wahl, C., Heeg, K., Echtenacher, B., Krammer, P. H., and Wagner, H. (1992) T cell-mediated lethal shock triggered in mice by the superantigen staphylo- coccal enterotoxin B: critical role of tumor necrosis factor, J. Exp. Med., 175, 91–98. doi: 10.1084/jem.175.1.91.CrossRefGoogle Scholar
  35. 35.
    Krutmann, J., Kirnbauer, R., Kock, A., Schwarz, T., Schopf, E., May, L. T., Sehgal, P. B., and Luger, T. A. (1990) Cross-linking Fc receptors on monocytes triggers IL-6 production. Role in anti-CD3-induced T cell activation, J. Immunol., 145, 1337–1342.Google Scholar
  36. 36.
    Kaushal, N., Singh, S. K., Gulati, M., Vaidya, Y., and Kaushik, M. (2016) Study of regulatory requirements for the conduct of bioequivalence studies in US, Europe, Canada, India, ASEAN and SADC countries: impact on generic drug substitution, JAPS, 6, 206–222. doi: 10.7324/JAPS.2016.60430.CrossRefGoogle Scholar
  37. 37.
    Voon, D. C., Subrata, L. S., Baltic, S., Leu, M. P., Whiteway, J. M., Wong, A., Knight, S. A., Christiansen, F. T., and Daly, J. M. (2005) Use of mRNA- and protein-destabilizing elements to develop a highly responsive reporter system, Nucleic Acids Res., 33, e27, doi: 10.1093/nar/gni030.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • A. N. Doronin
    • 1
    • 2
  • A. A. Gordeev
    • 1
    • 2
  • A. E. Kozlov
    • 1
  • Ya. A. Smirnova
    • 1
  • M. Yu. Puchkova
    • 1
    • 2
  • V. M. Ekimova
    • 1
  • Yu. I. Basovskiy
    • 1
    • 2
  • V. V. Solovyev
    • 1
    • 2
    Email author
  1. 1.BIOCADLyubuchany, Moscow RegionRussia
  2. 2.Pushchino State Institute of Natural SciencesPushchino, Moscow RegionRussia

Personalised recommendations