Biochemistry (Moscow)

, Volume 84, Issue 6, pp 686–692 | Cite as

Resveratrol Promotes in vitro Differentiation of Osteoblastic MC3T3-E1 Cells via Potentiation of the Calcineurin/NFATc1 Signaling Pathway

  • Y. Huang
  • J. Huo
  • F. Q. Liu
  • J. Liu
  • X. J. Zhang
  • C. H. Guo
  • L. H. SongEmail author


Resveratrol has been shown to stimulate differentiation of osteoblastic MC3T3-E1 cells in vitro; however, the mechanisms underlying the anabolic effect of resveratrol on osteoblasts remain largely unknown. Our study was aimed to investigate the molecular mechanism of resveratrol-induced differentiation of MC3T3-E1 cells. MC3T3-E1 cells were treated for 8 days with different concentrations of resveratrol (10−8-10−6 M) and 10−6 M cyclosporine A (CsA), a specific inhibitor of the calcineurin/NFAT pathway. According to the results of pilot studies of cell proliferation and alkaline phos-phatase activity, 10−7 M concentration of resveratrol was used in subsequent experiments. The levels of mRNA expression of the osteosis-related genes CaN, NFATc1, and Runx2 were analyzed by real-time RT-PCR; the levels of the corresponding proteins were estimated by Western blot analysis. Resveratrol upregulated expression of the CaN, NFATc1, and Runx2 genes at both mRNA and protein levels compared to the control group (p < 0.05), while CsA reduced the effects of resveratrol (p < 0.05). Using immunohistochemical staining, we showed that resveratrol induced NFATc1 accumulation in the cell nuclei, and treatment with CsA inhibited resveratrol-mediated induction of NFATc1, suggesting that the calcineurin/NFATc1 signaling pathway plays an important role in the regulatory effect of resveratrol on osteoblasts.


resveratrol cyclosporine A calcineurin/NFATc1 osteoblast differentiation 



alkaline phosphatase


alpha minimum essential medium




cyclosporine A




3-(4,5-dimethyl-2-thi-azolyl)-2,5-diphenyl-2-H-tetrazolium bromide


nuclear factor of activated T cells, cytoplasmic 1


nuclear factor kappa B


p-nitrophenyl phosphate


polyvinylidene fluoride


radioimmunoprecipitation assay


Runt-related transcription factor 2


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors thank Professor Song for her concentrated guidance during this study.


  1. 1.
    Chen, R. S., Wu, P. L., and Chiou, R. Y. (2002) Peanut roots as a source of resveratrol, J. Agric. Food Chem., 50, 1665–1667.CrossRefGoogle Scholar
  2. 2.
    Fremont, L. (2000) Biological effects of resveratrol, Life Sci., 66, 663–673.CrossRefGoogle Scholar
  3. 3.
    Mizutani, K., Ikeda, K., Kawai, Y., and Yamori, Y. (2000) Resveratrol attenuates ovariectomy-induced hypertension and bone loss in stroke-prone spontaneously hypertensive rats, J. Nutr. Sci. Vitaminol. (Tokyo), 46, 78–83.CrossRefGoogle Scholar
  4. 4.
    Koga, T., Matsui, Y., Asagiri, M., Kodama, T., Crombrugghe, B., Nakashima, K., and Takayanagi, H. (2005) NFAT and Osterix cooperatively regulate bone formation, Nat. Med., 11, 880–885.CrossRefGoogle Scholar
  5. 5.
    Penolazzi, L., Zennaro, M., Lambertini, E., Tavanti, E., Torreggiani, E., Gambari, R., and Piva, R. (2007) Induction of estrogen receptor alpha expression with decoy oligonucleotide targeted to NFATc1 binding sites in osteoblasts, Mol. Pharmacol., 71, 1457–1462.CrossRefGoogle Scholar
  6. 6.
    Zhou, F., Shen, Y., Liu, B., Chen, X., Wan, L., and Peng, D. (2017) Gastrodin inhibits osteoclastogenesis via down-regulating the NFATc1 signaling pathway and stimulates osseointegration in vitro, Biochem. Biophys. Res. Commun., 484, 820–826.CrossRefGoogle Scholar
  7. 7.
    Ziros, P. G., Gil, A. P., Georgakopoulos, T., Habeos, I., Kletsas, D., Basdra, E. K., and Papavassiliou, A. G. (2002) The bone-specific transcriptional regulator Cbfa1 is a target of mechanical signals in osteoblastic cells, J. Biol. Chem., 277, 23934–23941.CrossRefGoogle Scholar
  8. 8.
    Ziros, P. G., Basdra, E. K., and Papavassiliou, A. G. (2008) Runx2: of bone and stretch, Int. J. Biochem. Cell Biol., 40, 1659–1663.CrossRefGoogle Scholar
  9. 9.
    Vimalraj, S., and Selvamurugan, N. (2013) MicroRNAs: synthesis, gene regulation and osteoblast differentiation, Curr. Issues Mol. Biol., 15, 7–18.Google Scholar
  10. 10.
    Kang, J. S., Alliston, T., Delston, R., and Derynck, R. (2005) Repression of Runx2 function by TGF-beta through recruitment of class II histone deacetylases by Smad3, EMBO J., 24, 2543–2555.CrossRefGoogle Scholar
  11. 11.
    Jeon, E. J., Lee, K. Y., Choi, N. S., Lee, M. H., Kim, H. N., Jin, Y. H., Ryoo, H. M., Choi, J. Y., Yoshida, M., Nishino, N., Oh, B. C., Lee, K. S., Lee, Y. H., and Bae, S. C. (2006) Bone morphogenetic protein-2 stimulates Runx2 acetylation, J. Biol. Chem., 281, 16502–16511.CrossRefGoogle Scholar
  12. 12.
    Song, L. H., Pan, W., Yu, Y. H., Quarles, L. D., Zhou, H. H., and Xiao, Z. S. (2006) Resveratrol prevents CsA inhibition of proliferation and osteoblastic differentiation of mouse bone marrow-derived mesenchymal stem cells through an ER/NO/cGMP pathway, Toxicol. In Vitro, 20, 915–922.CrossRefGoogle Scholar
  13. 13.
    Schmittgen, T. D., and Livak, K. J. (2008) Analyzing realtime PCR data by the comparative CT method, Nat. Protoc., 3, 1101–1108.CrossRefGoogle Scholar
  14. 14.
    Jakob, F., Genest, F., Baron, G., Stumpf, U., Rudert, M., and Seefried, L. (2015) Regulation of bone metabolism in osteoporosis: novel drugs for osteoporosis in development, Unfallchirurg, 118, 925–932.CrossRefGoogle Scholar
  15. 15.
    Rachner, T. D., Khosla, S., and Hofbauer, L. C. (2011) Osteoporosis: now and the future, Lancet, 377, 1276–1287.CrossRefGoogle Scholar
  16. 16.
    Li, P., Wang, Y., Liu, X., Zhou, Z., Wang, J., Zhou, H., Zheng, L., and Yang, L. (2019) Atypical antipsychotics induce human osteoblasts apoptosis via Wnt/ß-catenin signaling, BMC Pharmacol. Toxicol., 20, 10.CrossRefGoogle Scholar
  17. 17.
    Dai, Z., Li, Y., Quarles, L. D., Song, T., Pan, W., Zhou, H., and Xiao, Z. (2006) Resveratrol enhances proliferation and osteoblastic differentiation in human mesenchymal stem cells via ER-dependent ERK1/2 activation, Phytomedicine, 14, 806–814.CrossRefGoogle Scholar
  18. 18.
    Zhao, M., Ko, S. Y., Garrett, I. R., Mundy, G. R., Gutierrez, G. E., and Edwards, J. R. (2018) The polyphenol resveratrol promotes skeletal growth in mice through asirtuin 1-bone morphogenic protein 2 longevity axis, Br. J. Pharmacol., 175, 4183–4192.CrossRefGoogle Scholar
  19. 19.
    Maeno, T., Moriishi, T., Yoshida, C. A., Komori, H., Kanatani, N., Izumi, S., Takaoka, K., and Komori, T. (2011) Early onset of Runx2 expression caused craniosyn-ostosis, ectopic bone formation, and limb defects, Bone, 49, 673–682.CrossRefGoogle Scholar
  20. 20.
    Rao, A., Luo, C., and Hogan, P. G. (1997) Transcription factors of the NFAT family: regulation and function, Annu. Rev. Immunol., 15, 707–747.CrossRefGoogle Scholar
  21. 21.
    Flanagan, W. M., Corthesy, B., Bram, R. J., and Crabtree, G. R. (1991) Nuclear association of a T-cell transcription factor blocked by FK-506 and cyclosporine A, Nature, 352, 803–807.CrossRefGoogle Scholar
  22. 22.
    Zayzafoon, M. (2006) Calcium/calmodulin signaling controls osteoblast growth and differentiation, J. Cell. Biochem., 97, 56–70.CrossRefGoogle Scholar
  23. 23.
    Sun, L., Blair, H. C., Peng, Y., Zaidi, N., Adebanjo, O. A., Wu, X. B., Wu, X. Y., Iqbal, J., Epstein, S., and Abe, E. (2005) Calcineurin regulates bone formation by the osteoblast, Proc. Natl. Acad. Sci. USA, 102, 17130–17135.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • Y. Huang
    • 1
  • J. Huo
    • 2
  • F. Q. Liu
    • 3
  • J. Liu
    • 3
  • X. J. Zhang
    • 4
  • C. H. Guo
    • 4
  • L. H. Song
    • 4
    Email author
  1. 1.Department of BiochemistryChangzhi Medical CollegeChangzhi, ShanxiChina
  2. 2.Department of BiologyChangzhi Medical CollegeChangzhi, ShanxiChina
  3. 3.Changzhi Medical CollegeChangzhi, ShanxiChina
  4. 4.Department of PharmacologyChangzhi Medical CollegeChangzhi, ShanxiChina

Personalised recommendations