Advertisement

Biochemistry (Moscow)

, Volume 84, Issue 6, pp 663–671 | Cite as

The Opposite Effects of ROCK and Src Kinase Inhibitors on Susceptibility of Eukaryotic Cells to Invasion by Bacteria Serratia grimesii

  • E. S. Bozhokina
  • O. A. Tsaplina
  • S. Yu. KhaitlinaEmail author
Article

Abstract

Bacterial internalization into eukaryotic cells is ensured by a sophisticated interplay of bacterial and host cell factors. Being a part of cell environment, opportunistic intracellular bacteria have developed various mechanisms providing their interaction with cell surface receptors (E-cadherin, integrins, epidermal growth factor receptor), activation of components of eukaryotic signaling pathways, and facilitation of bacterial uptake, survival, and intracellular replication. Our previous studies on the mechanisms underlying penetration of the opportunistic bacteria Serratia grimesii into cultured eukaryotic cells have shown that pretreatment of the cells with N-acetylcysteine (NAC) promotes S. grimesii invasion, and this effect correlates with the upregulation of E-cadherin expression. Since NAC has been shown to regulate expression of both Src kinase and ROCK, the aim of this work was to reveal the role of these kinases in S. grimesii invasion. We demonstrated that Y-27632, a specific inhibitor of ROCK, significantly promoted invasion of cultured eukaryotic cells by S. grimesii. On the other hand, invasion of the same cells by S. grimesii was inhibited with the Src kinase inhibitor Src-I1 and siRNA directed against RhoA. The effects of the inhibitors correlated with the corresponding changes in the E-cadherin gene expression, upregulation by the ROCK inhibition and downregulation by the Src kinase inhibition. These results prove the participation of ROCK and Src protein kinases in the invasion of eukaryotic cells by the opportunistic pathogen S. grimesii, as well as suggest that other signaling pathways might be involved in S. grimesii uptake, that are promoted by the ROCK inhibition with Y-27632.

Keywords

bacterial invasion RhoA ROCK kinase Src kinase Serratia grimesii 

Abbreviations

k

CFU

k

colony forming units

NAC

N-acetylcysteine

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ham, H., Sreelatha, A., and Orth, K. (2011) Manipulation of host membranes by bacterial effectors, Nat. Rev. Microbiol., 9, 635–646.CrossRefGoogle Scholar
  2. 2.
    Bhavsar, P. A., Guttman, J. A., and Finlay, B. B. (2007) Manipulation of host-cell pathways by bacterial pathogens, Nature, 449, 827–834.CrossRefGoogle Scholar
  3. 3.
    Carabeo, R. (2011) Bacterial subversion of host actin dynamics at the plasma membrane, Cell. Microbiol., 13, 1460–1469.CrossRefGoogle Scholar
  4. 4.
    Personic, N., Barlocher, K., Finsel, I., and Hilbi, H. (2016) Subversion of retrograde trafficking by translocated pathogen effectors, Trends Microbiol., 24, 450–462.CrossRefGoogle Scholar
  5. 5.
    Weber, M. M., and Faris, R. (2018) Subversion of the endocytic and secretory pathways by bacterial effector proteins, Front. Cell Dev. Biol., 6, 1–17.CrossRefGoogle Scholar
  6. 6.
    Rosenshine, I., and Finlay, B. B. (1993) Exploitation of host signal transduction pathways and cytoskeletal functions by invasive bacteria, BioEssays, 15, 17–24.CrossRefGoogle Scholar
  7. 7.
    Cossart, P., and Sansonetti, P. J. (2004) Bacterial invasion: the paradigms of enteroinvasive pathogens, Science, 304, 242–248.CrossRefGoogle Scholar
  8. 8.
    Boumart, Z., Velge, P., and Wiedemann, A. (2014) Multiple invasion mechanisms and different intracellular behaviors: a new vision of Salmonella-host cell interaction, FEMS Microbiol. Lett., 361, 1–7.CrossRefGoogle Scholar
  9. 9.
    Mattock, E., and Blocker, A. J. (2017) How do the virulence factors of Shigella work together to cause disease? Front. Cell Infect. Microbiol., 7, 64.CrossRefGoogle Scholar
  10. 10.
    Bonazzi, M., Lecuit, M., and Cossart, P. (2009) Listeria monocytogenes internalin and E-cadherin: from structure to pathogenesis, Cell. Microbiol., 11, 693–702.CrossRefGoogle Scholar
  11. 11.
    Ribet, D., and Cossart, P. (2015) How bacterial pathogens colonize their hosts and invade deeper tissues, Microbes Infect., 17, 173–183.CrossRefGoogle Scholar
  12. 12.
    Agerer, F., Antje, M., Ohlsen, K., and Hauck, C. R. (2003) Integrin-mediated invasion of Staphylococcus aureus into human cells requires Src family protein-tyrosine kinases, J. Biol. Chem., 278, 42524–42531.CrossRefGoogle Scholar
  13. 13.
    Eitel, J., Heise, T., Thiesen, U., and Dersch, P. (2005) Cell invasion and IL-8 production pathways initiated by YadA of Yersinia pseudotuberculosis require common signaling molecules (FAK, c-Src, Ras) and distinct cell factors, Cell. Microbiol., 7, 63–77.CrossRefGoogle Scholar
  14. 14.
    Scibelli, A., Roperto, S., Manna, L., Pavone, L. M., Tafuri, S., Della Morte, R., and Staiano, N. (2007) Engagement of integrins as a cellular route of invasion by bacterial pathogens, Veter. J., 173, 482–491.CrossRefGoogle Scholar
  15. 15.
    Wiedemann, A., Mijouin, L., Ayoub, M. A., Barilleau, E., Canepa, S., Teixeira- Gomes, A. P., Le Vern, Y., Rosselin, M., Reiter, E., and Velge, P. (2016) Identification of the epidermal growth factor receptor as the receptor for Salmonella Rck-dependent invasion, FASEB J., 304, 4180–4191.CrossRefGoogle Scholar
  16. 16.
    Mambu, J., Virlogeux-Payant, I., Holbert, S., Grepinet, O., Velge, P., and Wiedemann, A. (2017) An updated view on the Rck invasion of Salmonella: still much to discover, Front. Cell. Infect. Microbiol., 7, 500.CrossRefGoogle Scholar
  17. 17.
    Grimont, F., and Grimont, P. A. D. (2006) The genus Serratia, Prokaryotes, 6, 219–244.CrossRefGoogle Scholar
  18. 18.
    Mahlen, S. D. (2011) Serratia infections: from military experiments to current practice, Clin. Microbiol. Rev., 24, 755–791.CrossRefGoogle Scholar
  19. 19.
    Bozhokina, E. S., Tsaplina, O. A., Efremova, T. N., Kever, L. V., Demidyuk, I. V., Kostrov, S. V., Adam, T., Komissarchik, Y. Y., and Khaitlina, S. Y. (2011) Bacterial invasion of eukaryotic cells can be mediated by actin-hydrolyzing metalloproteases grimelysin and protealysin, Cell Biol. Int., 35, 111–118.CrossRefGoogle Scholar
  20. 20.
    Bozhokina, E., Vakhromova, E., Gamaley, I., and Khaitlina, S. (2013) N-acetylcysteine increases susceptibility of HeLa cells to bacterial invasion, J. Cell. Biochem., 114, 1568–1574.CrossRefGoogle Scholar
  21. 21.
    Bozhokina, E., Khaitlina, S., and Gamaley, I. (2015) Dihydrolipoic but not alphalipoic acid affects susceptibility of eukaryotic cells to bacterial invasion, Biochem. Biophys. Res. Commun., 460, 697–702.CrossRefGoogle Scholar
  22. 22.
    Parasassi, T., Brunelli, R., Bracci-Laudiero, L., Greco, G., Gustafsson, A. C., Krasnowska, E. K., Lundeberg, J., Lundeberg, T., Pittaluga, E., Romano, M. C., and Serafino, A. (2005) Differentiation of normal and cancer cells induced by sulfhydryl reduction: biochemical and molecular mechanisms, Cell Death Differ., 12, 1285–1296.CrossRefGoogle Scholar
  23. 23.
    Kirchner, M., and Higgins, D. E. (2008) Inhibition of ROCK activity allows InlF-mediated invasion and increased virulence of Listeria monocytogenes, Mol. Microbiol., 68, 749–767.CrossRefGoogle Scholar
  24. 24.
    Krasnowska, E. K., Pittaluga, E., Brunati, A. M., Brunelli, R., Costa, G., De Spirito, M., Serafino, A., Ursini, F., and Parasassi, T. (2008) N-acetyl-l-cysteine fosters inactivation and transfer to endolysosomes of c-Src, Free Radic. Biol. Med., 45, 1566–1572.CrossRefGoogle Scholar
  25. 25.
    Bozhokina, E., Khaitlina, S., and Adam, T. (2008) Grimelysin, a novel metalloprotease from Serratia grimesii, is similar to ECP32, Biochem. Biophys. Res. Commun., 367, 888–892.CrossRefGoogle Scholar
  26. 26.
    Prouty, A. M., and Gunn, J. S. (2000) Salmonella enterica serovar typhimurium invasion is repressed in the presence of bile, Infect. Immun., 68, 6763–6769.CrossRefGoogle Scholar
  27. 27.
    Svoboda, K. K. H., Moessner, P., Field, T., and Acevedo, J. (2004) ROCK inhibitor (Y27632) increases apoptosis and disrupts the actin cortical mat in embryonic avian corneal epithelium, Dev. Dyn., 229, 579–590.CrossRefGoogle Scholar
  28. 28.
    Heng, B. C. (2009) Effect of Rho-associated kinase (ROCK) inhibitor Y-27632 on the post-thaw viability of cryopreserved human bone marrow-derived mesenchymal stem cells, Tissue Cell, 41, 376–380.CrossRefGoogle Scholar
  29. 29.
    Riento, K., and Ridley, A. J. (2003) ROCKs: multifunctional kinases in cell behavior, Nat. Rev. Mol. Cell Biol., 4, 446–456.CrossRefGoogle Scholar
  30. 30.
    Rajakyla, E. K., and Vartiainen, M. K. (2014) Rho, nuclear actin, and actin-binding proteins in the regulation of transcription and gene expression, Small GTPases, 5, e27539.CrossRefGoogle Scholar
  31. 31.
    Rath, N., Morton, J. P., Julian, L., Helbig, L., Kadir, S., McGhee, E. J., Anderson, K. I., Kalna, G., Mullin, M., Pinho, A. V., Rooman, I., Samuel, M. S., and Olson, M. F. (2017) ROCK signaling promotes collagen remodeling to facilitate invasive pancreatic ductal adenocarcinoma tumor cell growth, EMBO Mol. Med., 9, 198–218.CrossRefGoogle Scholar
  32. 32.
    Piltti, J., Bygdell, J., Fernandez-Echevarria, C., and Marcellino, D. (2017) Rhokinase inhibitor Y-27632 and hypoxia synergistically enhance chondrocytic phenotype and modify S100 protein profiles in human chondrosarcoma cells, Sci. Rep., 7, 3708.CrossRefGoogle Scholar
  33. 33.
    Yeatman, T. J. (2010) A renaissance for Src, Nat. Rev. Cancer, 4, 470–480.CrossRefGoogle Scholar
  34. 34.
    Kruewel, T., Schenone, S., Radi, M., Maga, G., Rohrbeck, A., Botta, M., and Borlak, J. (2010) Molecular characterization of c-Abl/c-Src kinase inhibitors targeted against murine tumor progenitor cells that express stem cell markers, PLoS One, 5, e14143.CrossRefGoogle Scholar
  35. 35.
    Chang, Y. W., Marlin, J. W., Chance, T. W., and Jakobi, R. (2006) RhoA mediates cyclooxygenase-2 signaling to disrupt the formation of adherens junctions and increase cell motility, Cancer Res., 66, 11700–11708.CrossRefGoogle Scholar
  36. 36.
    Shankar, J., and Nabi, I. R. (2015) Actin cytoskeleton regulation of epithelial mesenchymal transition in metastatic cancer cells, PLoS One, 10, e0119954.CrossRefGoogle Scholar
  37. 37.
    Lee, G., Kim, H. J., and Kim, H.-M. (2016) RhoA-JNK regulates the E-cadherin junctions of human gingival epithelial cells, J. Dent. Res., 95, 284–291.CrossRefGoogle Scholar
  38. 38.
    Ivlev, A. P., Efremova, T. N., Khaitlina, S. Yu., and Bozhokina, E. S. (2018) Difference in susceptibility of 3T3 and 3T3-SV40 cells to invasion by opportunistic pathogens Serratia grimesii, Cell Tissue Biol., 12, 33–40.CrossRefGoogle Scholar
  39. 39.
    Sousa, S., Cabanes, D., Bougneres, L., Lecuit, M., Sansonetti, P., Tran-Van-Nhieu, G., and Cossart, P. (2007) Src, cortactin and Arp2/3 complex are required for E-cadherin-mediated internalization of Listeria into cells, Cell. Microbiol., 9, 2629–2643.CrossRefGoogle Scholar
  40. 40.
    Bonazzi, M., Veiga, E., Pizarro-Cerda, J., and Cossart, P. (2008) Successive post-translational modifications of E-cadherin are required for InlA-mediated internalization of Listeria monocytogenes, Cell. Microbiol., 10, 2208–2222.CrossRefGoogle Scholar
  41. 41.
    Eto, D. S., Jones, T. A., Sundsbak, J. L., and Mulvey, M. A. (2007) Integrin-mediated host cell invasion by type 1-piliated uropathogenic Escherichia coli, PLoS Pathog., 3, e100.CrossRefGoogle Scholar
  42. 42.
    Liu, W., Zhao, W. D., Yan, J. C., Ren, Z. Y., Fang, W. G., Zhu, L., Shang, D. S., and Chen, Y. H. (2010) Involvement of Src tyrosine kinase in Escherichia coli invasion of human brain microvascular endothelial cells, FEBS Lett., 584, 27–32.CrossRefGoogle Scholar
  43. 43.
    Amano, M., Nakayama, M., and Kaibuchi, K. (2010) Rhokinase/ROCK: a key regulator of the cytoskeleton and cell polarity, Cytoskeleton, 67, 545–554.CrossRefGoogle Scholar
  44. 44.
    Julian, L., and Olson, M. F. (2014) Rho-associated coiledcoil containing kinases (ROCK), Small GTPases, 5, e29846.CrossRefGoogle Scholar
  45. 45.
    Chen, Y. H., Chen, S. H., Jong, A., Zhou, Z. Y., Li, W., Suzuki, K., and Huang, S. H. (2002) Enhanced Escherichia coli invasion of human brain microvascular endothelial cells is associated with alternations in cytoskeleton induced by nicotine, Cell. Microbiol., 4, 503–514.CrossRefGoogle Scholar
  46. 46.
    Soong, G., Martin, F. J., Chun, J., Cohen, T., Ahn, D. S., and Prince, A. (2011) Staphylococcus aureus protein A mediates invasion across airway epithelial cells through activation of RhoA GTPase signaling and proteolytic activity, J. Biol. Chem., 286, 35891–35898.CrossRefGoogle Scholar
  47. 47.
    Wolke, S., Ackermann, N., and Heesemann, J. (2011) The Yersinia enterocolitica type 3 secretion system (T3SS) as toolbox for studying the cell biological effects of bacterial Rho GTPase modulating T3SS effector proteins, Cell. Microbiol., 13, 1339–1357.CrossRefGoogle Scholar
  48. 48.
    Wang, L., Xue, L., Yan, H., Li, J., and Lu, Y. (2010) Effects of ROCK inhibitor, Y-27632, on adhesion and mobility in esophageal squamous cell cancer cells, Mol. Biol. Rep., 37, 1971–1977.CrossRefGoogle Scholar
  49. 49.
    Fu, P., Tang, R., Yu, Z., Li, C., Chen, X., Xie, M., Wang, W., and Luo, X. (2016) Rho-associated kinase inhibitors promote microglial uptake via the ERK signaling pathway, Neurosci. Bull., 32, 8–91.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • E. S. Bozhokina
    • 1
  • O. A. Tsaplina
    • 1
  • S. Yu. Khaitlina
    • 1
    Email author
  1. 1.Institute of CytologyRussian Academy of SciencesSt. PetersburgRussia

Personalised recommendations