Advertisement

Biochemistry (Moscow)

, Volume 84, Issue 6, pp 652–662 | Cite as

Myeloperoxidase-Induced Oxidation of Albumin and Ceruloplasmin: Role of Tyrosines

  • I. I. VlasovaEmail author
  • A. V. Sokolov
  • V. A. Kostevich
  • E. V. Mikhalchik
  • V. B. Vasilyev
Article
  • 5 Downloads

Abstract

Neutrophil myeloperoxidase (MPO) plays an important role in protecting the body against infections. MPO products–hypohalous acids and phenoxyl radicals–are strong oxidants that can damage not only foreign intruders but also host tissues, including blood plasma proteins. Here, we compared the MPO-induced oxidation of two plasma proteins with antioxidant properties–human serum albumin (HSA) and ceruloplasmin (CP). Incubation of both proteins with hypochlorite (NaOCl) or catalytically active MPO (MPO + H2O2), which synthesizes hypochlorous acid (HOCl) in the presence of chloride ions, resulted in the quenching of protein tryptophan fluorescence. Oxidation-induced changes in the structures of HSA and CP were different. HSA efficiently neutralized MPO-generated oxidants without protein aggregation, while CP oxidation resulted in the formation of large aggregates stabilized by strong covalent bonds between the aromatic amino acid residues. Tyrosine is present in the plasma as free amino acid and also as a component of the polypeptide chains of the proteins. The number of tyrosine residues in a protein does not determine its propensity for aggregate formation. In the case of C P, protein aggregation was primarily due to the high content of tryptophan residues in its polypeptide chain. MPO-dependent oxidation of free tyrosine results in the formation of tyrosyl radicals, that do not oxidize aromatic amino acid residues in proteins because of the high rate of recombination with dityrosine formation. At the same time, free tyrosine can influence MPO-induced protein oxidation due to its ability to modulate HOCl synthesis in the MPO active site.

Keywords

hypochlorous acid phenoxyl radicals protein oxidation tryptophan fluorescence protein aggregation 

Abbreviations

CP

ceruloplasmin

MPO

myeloperoxidase

Tyr

tyrosine

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arnhold, J. (2004) Free radicals–friends or foes? Properties, functions, and secretion of human myeloperoxidase, Biochemistry (Moscow), 69, 4–9, doi: 10.1023/B:BIRY.0000016344.59411.ee.CrossRefGoogle Scholar
  2. 2.
    Davies, M. J., Hawkins, C. L., Pattison, D. I., and Rees, M. D. (2008) Mammalian heme peroxidases: from molecular mechanisms to health implications, Antioxid. Redox Signal., 10, 1199–1234, doi:  https://doi.org/10.1089/ars.2007.1927.CrossRefGoogle Scholar
  3. 3.
    Arnhold, J., Furtmuller, P. G., and Obinger, C. (2003) Redox properties of myeloperoxidase, Redox Rep., 8, 179–186, doi:  https://doi.org/10.1179/135100003225002664.CrossRefGoogle Scholar
  4. 4.
    Furtmuller, P. G., Burner, U., Jantschko, W., Regelsberger, G., and Obinger, C. (2000) Two-electron reduction and one-electron oxidation of organic hydroperoxides by human myeloperoxidase, FEBS Lett., 484, 139–143.CrossRefGoogle Scholar
  5. 5.
    Kirchner, T., Flemmig, J., Furtmьller, P. G., Obinger, C., and Arnhold, J. (2010) (–)-Epicatechin enhances the chlorinating activity of human myeloperoxidase, Arch. Biochem. Biophys., 495, 21–27, doi:  https://doi.org/10.1016/j.abb.2009.12.013.CrossRefGoogle Scholar
  6. 6.
    Flemmig, J., Remmler, J., Rohring, F., and Arnhold, J. (2014) (–)-Epicatechin regenerates the chlorinating activity of myeloperoxidase in vitro and in neutrophil granulocytes, J. Inorg. Biochem., 130, 84–91, doi:  https://doi.org/10.1016/j.jinorgbio.2013.10.002.CrossRefGoogle Scholar
  7. 7.
    Vlasova, I. I., Sokolov, A. V., and Arnhold, J. (2012) The free amino acid tyrosine enhances the chlorinating activity of human myeloperoxidase, J. Inorg. Biochem., 106, 76–83, doi:  https://doi.org/10.1016/j.jinorgbio.2011.09.018.CrossRefGoogle Scholar
  8. 8.
    Tzikas, S., Schlak, D., Sopova, K., Gatsiou, A., Stakos, D., Stamatelopoulos, K., Stellos, K., and Laske, C. (2014) Increased myeloperoxidase plasma levels in patients with Alzheimer’s disease, J. Alzheimer’s Dis., 39, 557–564, doi:  https://doi.org/10.3233/JAD-131469.CrossRefGoogle Scholar
  9. 9.
    Baldus, S., Heeschen, C., Meinertz, T., Zeiher, A. M., Eiserich, J. P., Munzel, T., Simoons, M. L., and Hamm, C. W. (2003) Myeloperoxidase serum levels predict risk in patients with acute coronary syndromes, Circulation, 108, 1440–1445, doi: 10.1161/01.CIR.0000090690.67322.51.CrossRefGoogle Scholar
  10. 10.
    Vlasova, I. I., Arnhold, J., Osipov, A. N., and Panasenko, O. M. (2006) pH-dependent regulation of myeloperoxidase activity, Biochemistry (Moscow), 71, 667–677.CrossRefGoogle Scholar
  11. 11.
    Furtmuller, P. G., Zederbauer, M., Jantschko, W., Helm, J., Bogner, M., Jakopitsch, C., and Obinger, C. (2006) Active site structure and catalytic mechanisms of human peroxidases, Arch. Biochem. Biophys., 445, 199–213, doi:  https://doi.org/10.1016/j.abb.2005.09.017.CrossRefGoogle Scholar
  12. 12.
    Ramos, D. R., Garcia, M. V., Canle, L. M., Santaballa, J. A., Furtmuller, P. G., and Obinger, C. (2008) Myeloperoxidase-catalyzed chlorination: the quest for the active species, J. Inorg. Biochem., 102, 1300–1311, doi:  https://doi.org/10.1016/j.jinorgbio.2008.01.003.CrossRefGoogle Scholar
  13. 13.
    Zhang, R., Brennan, M. L., Shen, Z., MacPherson, J. C., Schmitt, D., Molenda, C. E., and Hazen, S. L. (2002) Myeloperoxidase functions as a major enzymatic catalyst for initiation of lipid peroxidation at sites of inflammation, J. Biol. Chem., 277, 46116–46122, doi:  https://doi.org/10.1074/jbc.M209124200.CrossRefGoogle Scholar
  14. 14.
    Vlasova, I. I., Feng, W.-H., Goff, J. P., Giorgianni, A., Do, D., Gollin, S. M., Lewis, D. W., Kagan, V. E., and Yalowich, J. C. (2011) Myeloperoxidase-dependent oxidation of etoposide in human myeloid progenitor CD34+ cells, Mol. Pharmacol., 79, 479–487, doi:  https://doi.org/10.1124/mol.110.068718.CrossRefGoogle Scholar
  15. 15.
    Jantschko, W., Furtmuller, P. G., Zederbauer, M., Neugschwandtner, K., Lehner, I., Jakopitsch, C., Arnhold, J., and Obinger, C. (2005) Exploitation of the unusual thermodynamic properties of human myeloperoxidase in inhibitor design, Biochem. Pharmacol., 69, 1149–1157, doi:  https://doi.org/10.1016/j.bcp.2005.02.006.CrossRefGoogle Scholar
  16. 16.
    Pattison, D. I., and Davies, M. J. (2006) Reactions of myeloperoxidase-derived oxidants with biological substrates: gaining chemical insight into human inflammatory diseases, Curr. Med. Chem., 13, 3271–3290, doi:  https://doi.org/10.2174/092986706778773095.CrossRefGoogle Scholar
  17. 17.
    Senthilmohan, R., and Kettle, A. J. (2006) Bromination and chlorination reactions of myeloperoxidase at physiological concentrations of bromide and chloride, Arch. Biochem. Biophys., 445, 235–244, doi:  https://doi.org/10.1016/j.abb.2005.07.005.CrossRefGoogle Scholar
  18. 18.
    Brennan, M. L., and Hazen, S. L. (2003) Amino acid and protein oxidation in cardiovascular disease, Amino Acids, 25, 365–374, doi:  https://doi.org/10.1007/s00726-003-0023-y.CrossRefGoogle Scholar
  19. 19.
    Shao, B., Tang, C., Sinha, A., Mayer, P. S., Davenport, G. D., Brot, N., Oda, M. N., Zhao, X. Q., and Heinecke, J. W. (2014) Humans with atherosclerosis have impaired ABCA1 cholesterol efflux and enhanced high-density lipoprotein oxidation by myeloperoxidase, Circ. Res., 114, 1733–1742, doi: 10.1161/CIRCRESAHA.114.303454.CrossRefGoogle Scholar
  20. 20.
    Arnhold, J., Hammerschmidt, S., Wagner, M., Mueller, S., Arnold, K., and Grimm, E. (1990) On the action of hypochlorite on human serum albumin, Biomed. Biochim. Acta, 49, 991–997.Google Scholar
  21. 21.
    Colombo, G., Clerici, M., Altomare, A., Rusconi, F., Giustarini, D., Portinaro, N., Garavaglia, M. L., Rossi, R., Dalle-Donne, I., and Milzani, A. (2017) Thiol oxidation and di-tyrosine formation in human plasma proteins induced by inflammatory concentrations of hypochlorous acid, J. Proteomics, 152, 22–32, doi:  https://doi.org/10.1016/j.jprot.2016.10.008.CrossRefGoogle Scholar
  22. 22.
    Colombo, G., Reggiani, F., Cucchiari, D., Portinaro, N. M., Giustarini, D., Rossi, R., Garavaglia, M. L., Saino, N., Milzani, A., Badalamenti, S., and Dalle-Donne, I. (2017) Plasma protein-bound di-tyrosines as biomarkers of oxidative stress in end stage renal disease patients on maintenance haemodialysis, BBA Clin., 7, 55–63, doi:  https://doi.org/10.1016/j.bbacli.2016.12.004.CrossRefGoogle Scholar
  23. 23.
    Meotti, F. C., Jameson, G. N. L., Turner, R., Harwood, D. T., Stockwell, S., Rees, M. D., Thomas, S. R., and Kettle, A. J. (2011) Urate as a physiological substrate for myeloperoxidase: implications for hyperuricemia and inflammation, J. Biol. Chem., 286, 12901–12911, doi:  https://doi.org/10.1074/jbc.M110.172460.CrossRefGoogle Scholar
  24. 24.
    Salavej, P., Spalteholz, H., and Arnhold, J. (2006) Modification of amino acid residues in human serum albumin by myeloperoxidase, Free Radic. Biol. Med., 40, 516–525, doi:  https://doi.org/10.1016/j.freeradbiomed.2005.09.007.CrossRefGoogle Scholar
  25. 25.
    Carr, A. C., McCall, M. R., and Frei, B. (2000) Oxidation of LDL by myeloperoxidase and reactive nitrogen species: reaction pathways and antioxidant protection, Arterioscler. Thromb. Vasc. Biol., 20, 1716–1723, doi: 0.1161/01.ATV.20.7.1716.CrossRefGoogle Scholar
  26. 26.
    Dobretsov, G. E., Syrejshchikova, T. I., Smolina, N. V., and Uzbekov, M. V. (2015) CAPIDAN, a fluorescent reporter for detection of albumin drug-binding site changes, in Human Serum Albumin (HSA) (Stokes T., ed.) Nova Science Publisher, Inc., pp. 129–171.Google Scholar
  27. 27.
    Colombo, G., Clerici, M., Giustarini, D., Rossi, R., Milzani, A., and Dalle-Donne, I. (2012) Redox albuminomics: oxidized albumin in human diseases, Antioxid. Redox Signal., 17, 1515–1527, doi:  https://doi.org/10.1089/ars.2012.4702.CrossRefGoogle Scholar
  28. 28.
    Sozarukova, M. M., Proskurnina, E. V., and Vladimirov, Yu. A. (2016) Serum albumin as a sourse of and a target for free radicals in pathology, Bull. RSMU, 1, 56–61.CrossRefGoogle Scholar
  29. 29.
    Torres, M. J., Turell, L., Botti, H., Antmann, L., and Carballal, S. (2012) Modulation of the reactivity of the thiol of human serum albumin and its sulfenic derivative by fatty acids, Arch. Biochem. Biophys., 521, 102–110, doi:  https://doi.org/10.1016/j.abb.2012.03.011.CrossRefGoogle Scholar
  30. 30.
    Tiruppathi, C., Naqvi, T., Wu, Y., Vogel, S. M., Minshall, R. D., and Malik, A. B. (2004) Albumin mediates the transcytosis of myeloperoxidase by means of caveolae in endothelial cells, Proc. Natl. Acad. Sci. USA, 101, 7699–7704, doi:  https://doi.org/10.1073/pnas.0401712101.CrossRefGoogle Scholar
  31. 31.
    Atanasiu, R. L., Stea, D., Mateescu, M. A., Vergely, C., Dalloz, F., Briot, F., Maupoil, V., Nadeau, R., and Rochette, L. (1998) Direct evidence of caeruloplasmin antioxidant properties, Mol. Cell. Biochem., 189, 127–135.CrossRefGoogle Scholar
  32. 32.
    Barinov, N. A., Vlasova, I. I., Sokolov, A. V., Kostevich, V. A., Dubrovin, E. V., and Klinov, D. V. (2018) High-resolution atomic force microscopy visualization of metalloproteins and their complexes, Biochim. Biophys. Acta Gen. Subj., 1862, 2862–2868, doi:  https://doi.org/10.1016/j.bbagen.2018.09.008.CrossRefGoogle Scholar
  33. 33.
    Sokolov, A., Ageeva, K., Pulina, M., Cherkalina, O., Samygina, V., Vlasova, I. I., Panasenko, O., Zakharova, E., and Vasilyev, V. (2008) Ceruloplasmin and myeloperoxidase in complex affect the enzymatic properties of each other, Free Radic. Res., 42, 989–998, doi:  https://doi.org/10.1080/10715760802566574.CrossRefGoogle Scholar
  34. 34.
    Griffin, S. V., Chapman, P. T., Lianos, E. A., and Lockwood, C. M. (1999) The inhibition of myeloperoxidase by ceruloplasmin can be reversed by anti-myeloperoxidase antibodies, Kidney Int., 55, 917–925, doi:  https://doi.org/10.1046/j.1523-1755.1999.055003917.x.CrossRefGoogle Scholar
  35. 35.
    Park, Y. S., Suzuki, K., Mumby, S., Taniguchi, N., and Gutteridge, J. M. (2000) Antioxidant binding of caeruloplasmin to myeloperoxidase: myeloperoxidase is inhibited, but oxidase, peroxidase and immunoreactive properties of caeruloplasmin remain intact, Free Radic. Res., 33, 261–265.CrossRefGoogle Scholar
  36. 36.
    Chapman, A. L. P., Mocatta, T. J., Shiva, S., Seidel, A., Chen, B., Khalilova, I., Paumann-Page, M. E., Jameson, G. N. L., Winterbourn, C. C., and Kettle, A. J. (2013) Ceruloplasmin is an endogenous inhibitor of myeloperoxidase, J. Biol. Chem., 288, 6465–6477, doi:  https://doi.org/10.1074/jbc.M112.418970.CrossRefGoogle Scholar
  37. 37.
    Segelmark, M., Persson, B., Hellmark, T., and Wieslander, J. (1997) Binding and inhibition of myeloperoxidase (MPO): a major function of ceruloplasmin? Clin. Exp. Immunol., 108, 167–174.CrossRefGoogle Scholar
  38. 38.
    Sokolov, A. V., Pulina, M. O., Ageeva, K. V., Ayrapetov, M. I., Berlov, M. N., Volgin, G. N., Markov, A. G., Yablonsky, P. K., Kolodkin, N. I., Zakharova, E. T., and Vasilyev, V. B. (2007) Interaction of ceruloplasmin, lactoferrin, and myeloperoxidase, Biochemistry (Moscow), 72, 409–415.CrossRefGoogle Scholar
  39. 39.
    Sokolov, A. V., Kostevich, V. A., Romanico, D. N., Zakharova, E. T., and Vasilyev, V. B. (2012) Two-stage method for purification of ceruloplasmin based on its interaction with neomycin, Biochemistry (Moscow), 77, 631–638, doi:  https://doi.org/10.1134/S0006297912060107.CrossRefGoogle Scholar
  40. 40.
    Marquez, L. A., and Dunford, H. B. (1995) Kinetics of oxidation of tyrosine and dityrosine by myeloperoxidase compounds I and II, J. Biol. Chem., 270, 30434–30440, doi:  https://doi.org/10.1074/jbc.270.51.30434.CrossRefGoogle Scholar
  41. 41.
    Pfeiffer, S., Schmidt, K., and Mayer, B. (2000) Dityrosine formation outcompetes tyrosine nitration at low steady-state concentrations of peroxynitrite: implications for tyrosine modification by nitric oxide/superoxide in vivo, J. Biol. Chem., 275, 6346–6352, doi:  https://doi.org/10.1074/jbc.275.9.6346.CrossRefGoogle Scholar
  42. 42.
    Sokolov, A. V., Kostevich, V. A., Varfolomeeva, E. Y., Grigorieva, D. V., Gorudko, I. V., Kozlov, S. O., Kudryavtsev, I. V., Mikhalchik, E. V., Filatov, M. V., Cherenkevich, S. N., Panasenko, O. M., Arnhold, J., and Vasilyev, V. B. (2018) Capacity of ceruloplasmin to scavenge products of the respiratory burst of neutrophils is not altered by the products of reactions catalyzed by myeloperoxidase, Biochem. Cell Biol., 96, 457–467, doi:  https://doi.org/10.1139/bcb-2017-0277.CrossRefGoogle Scholar
  43. 43.
    Panasenko, O. M., Chekanov, A. V., Vlasova, I. I., Sokolov, A. V., Ageeva, K. V., Pulina, M. O., Cherkalina, O. S., and Vasil’ev, V. B. (2008) Influence of ceruloplasmin and lactoferrin on the chlorination activity of leukocyte myeloperoxidase assayed by chemiluminescence, Biophysics, 53, 268–272, doi:  https://doi.org/10.1134/S0006350908040052.CrossRefGoogle Scholar
  44. 44.
    Green, P. S., Mendez, A. J., Jacob, J. S., Crowley, J. R., Growdon, W., Hyman, B. T., and Heinecke, J. W. (2004) Neuronal expression of myeloperoxidase is increased in Alzheimer’s disease, J. Neurochem., 90, 724–733, doi:  https://doi.org/10.1111/j.1471-4159.2004.02527.x.CrossRefGoogle Scholar
  45. 45.
    Malle, E., Buch, T., and Grone, H.-J. (2003) Myeloperoxidase in kidney disease, Kidney Int., 64, 1956–1967, doi:  https://doi.org/10.1046/j.1523-1755.2003.00336.x.CrossRefGoogle Scholar
  46. 46.
    Aouffen, M., Paquin, J., Furtos, A., Waldron, K. C., and Mateescu, M.-A. (2004) Oxidative aggregation of ceruloplasmin induced by hydrogen peroxide is prevented by pyruvate, Free Radic. Res., 38, 19–26.CrossRefGoogle Scholar
  47. 47.
    Samygina, V. R., Sokolov, A. V., Bourenkov, G., Petoukhov, M. V., Pulina, M. O., Zakharova, E. T., Vasilyev, V. B., Bartunik, H., and Svergun, D. I. (2013) Ceruloplasmin: macromolecular assemblies with iron-containing acute phase proteins, PLoS One, 8, e67145, doi:  https://doi.org/10.1371/journal.pone.0067145.CrossRefGoogle Scholar
  48. 48.
    Kapralov, A., Vlasova, I. I., Feng, W., Maeda, A., Walson, K., Tyurin, V. A., Huang, Z., Aneja, R. K., Carcillo, J., Bayir, H., and Kagan, V. E. (2009) Peroxidase activity of hemoglobin–haptoglobin complexes. Covalent aggreation and oxidative stress in plasma and macrophages, J. Biol. Chem., 284, 30395–30407, doi:  https://doi.org/10.1074/jbc.M109.045567.CrossRefGoogle Scholar
  49. 49.
    Anraku, M., Yamasaki, K., Maruyama, T., Kragh-Hansen, U., and Otagiri, M. (2001) Effect of oxidative stress on the structure and function of human serum albumin, Pharm. Res., 18, 632–639.CrossRefGoogle Scholar
  50. 50.
    Hawkins, C. L., Pattison, D. I., and Davies, M. J. (2003) Hypochlorite-induced oxidation of amino acids, peptides and proteins, Amino Acids, 25, 259–274, doi:  https://doi.org/10.1007/s00726-003-0016-x.CrossRefGoogle Scholar
  51. 51.
    Potsch, S., Lendzian, F., Ingemarson, R., Hornberg, A., Thelander, L., Lubitz, W., Lassmann, G., and Graslund, A. (1999) The iron–oxygen reconstitution reaction in protein R2-Tyr177 mutants of mouse ribonucleotide reductase: EPR and electron nuclear double resonance studies on a new transient tryptophan radical, J. Biol. Chem., 274, 17696–17704, doi:  https://doi.org/10.1074/jbc.274.25.17696.CrossRefGoogle Scholar
  52. 52.
    Carvalho, L. C., Estevao, M. S., Ferreira, L. M., Fernandes, E., and Marques, M. M. B. (2010) A new insight on the hypochlorous acid scavenging mechanism of tryptamine and tryptophan derivatives, Bioorg. Med. Chem. Lett., 20, 6475–6478, doi:  https://doi.org/10.1016/j.bmcl.2010.09.067.CrossRefGoogle Scholar
  53. 53.
    Polimova, A. M., Vladimirova, G. A., Proskurnina, E. V., and Vladimirov, Y. A. (2011) Aromatic amino acid oxidation products as antioxidants, Biophysics, 56, 585–589, doi:  https://doi.org/10.1134/S000635091104021X.CrossRefGoogle Scholar
  54. 54.
    Carroll, L., Pattison, D. I., Davies, J. B., Anderson, R. F., Lopez-Alarcon, C., and Davies, M. J. (2018) Superoxide radicals react with peptide-derived tryptophan radicals with very high rate constants to give hydroperoxides as major products, Free Radic. Biol. Med., 118, 126–136, doi:  https://doi.org/10.1016/j.freeradbiomed.2018.02.033.CrossRefGoogle Scholar
  55. 55.
    Ogasawara, Y., Namai, T., Togawa, T., and Ishii, K. (2006) Formation of albumin dimers induced by exposure to peroxides in human plasma: a possible biomarker for oxidative stress, Biochem. Biophys. Res. Commun., 340, 353–358, doi:  https://doi.org/10.1016/j.bbrc.2005.11.183.CrossRefGoogle Scholar
  56. 56.
    Annibal, A., Colombo, G., Milzani, A., Dalle-Donne, I., Fedorova, M., and Hoffmann, R. (2016) Identification of dityrosine cross-linked sites in oxidized human serum albumin, J. Chromatogr. B Anal. Technol. Biomed. Life Sci., 1019, 147–155, doi:  https://doi.org/10.1016/j.jchromb.2015.12.022.CrossRefGoogle Scholar
  57. 57.
    Colombo, G., Clerici, M., Giustarini, D., Portinaro, N., Badalamenti, S., Rossi, R., Milzani, A., and Dalle-Donne, I. (2015) A central role for intermolecular dityrosine cross-linking of fibrinogen in high molecular weight advanced oxidation protein product (AOPP) formation, Biochim. Biophys. Acta Gen. Subj., 1850, 1–12, doi:  https://doi.org/10.1016/j.bbagen.2014.09.024.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • I. I. Vlasova
    • 1
    • 2
    Email author
  • A. V. Sokolov
    • 1
    • 3
    • 4
  • V. A. Kostevich
    • 1
    • 3
  • E. V. Mikhalchik
    • 1
  • V. B. Vasilyev
    • 3
    • 4
  1. 1.Federal Research and Clinical Center of Physical-Chemical MedicineMoscowRussia
  2. 2.Institute for Regenerative Medicine, Laboratory of Navigational Redox LipidomicsI. M. Sechenov First Moscow State Medical UniversityMoscowRussia
  3. 3.Institute of Experimental MedicineSt. PetersburgRussia
  4. 4.St. Petersburg State UniversitySt. PetersburgRussia

Personalised recommendations