Biochemistry (Moscow)

, Volume 84, Issue 6, pp 637–643 | Cite as

Protective Effect of Peroxiredoxin 6 Against Toxic Effects of Glucose and Cytokines in Pancreatic RIN-m5F β-Cells

  • E. G. NovoselovaEmail author
  • O. V. Glushkova
  • S. B. Parfenuyk
  • M. O. Khrenov
  • S. M. Lunin
  • T. V. Novoselova
  • M. G. Sharapov
  • I. A. Shaev
  • V. I. Novoselov


Taking into account a special role of pancreatic β-cells in the development of diabetes mellitus, the effects of peroxiredoxin 6 (Prx6) on the viability and functional activity of rat insulinoma RIN-m5F β-cells were studied under diabetes-simulating conditions. For this purpose, the cells were cultured at elevated glucose concentrations or in the presence of proinflammatory cytokines (TNF-α and IL-1) known for their special role in the cytotoxic autoimmune response in diabetes. It was found that the increased glucose concentration of 23-43 mM caused death of 20-60% β-cells. Prx6 added to cells significantly reduced the level of reactive oxygen species and protected the RIN-m5F ß-cells from hyperglycemia, reducing the death of these cells by several fold. A measurement of insulin secretion by the RIN-m5F ß-cells showed a significant stimulatory effect of Prx6 on the insulin-producing activity of pancreatic β-cells. It should be noted that the stimulatory activity of Prx6 was detected during culturing the cells under both normal and unfavorable conditions. The regulation of the NF-ϰB signaling cascade could be one of the mechanisms of Prx6 action on β-cells, in particular, through activation of RelA/p65 phosphorylation at Ser536.


peroxiredoxin 6 hyperglycemia cytokines RIN-m5F β-cells insulin production signaling cascade NF-ϰB 



5-(and 6)-carboxy-2′,7′-dichlorodihydrofluorescein diacetate (general oxidative stress indicator)


glutathione peroxidase




nuclear factor kappa-B


peroxiredoxin 6

RIN-m5F cells

rat insulinoma cells


reactive oxygen species


superoxide dismutase


tumor necrosis factor alpha


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



In the work, we used the equipment of the Pushchino Scientific Center Collective Use Center (an Infinite 200 plate reader; Tecan, Austria).


  1. 1.
    Hober, D., and Sane, F. (2010) Enteroviral pathogenesis of type 1 diabetes, Discov. Med., 10, 151–160.Google Scholar
  2. 2.
    Kaneto, H., Katakami, N., Kawamori, D., Miyatsuka, T., Sakamoto, K., Matsuoka, T. A., Matsuhisa, M., and Yamasaki, Y. (2007) Involvement of oxidative stress in the pathogenesis of diabetes, Antioxid. Redox Signal., 9, 355–366.CrossRefGoogle Scholar
  3. 3.
    Rains, J. L., and Jain, S. K. (2011) Oxidative stress, insulin signaling, and diabetes, Free Radic. Biol. Med., 50, 567–575, doi: Scholar
  4. 4.
    Wojnar, W., Zych, M., and Kaczmarczyk-Sedlak, I. (2018) Antioxidative effect of flavonoid naringenin in the lenses of type 1 diabetic rats, Biomed. Pharmacother., 108, 974–984, doi: Scholar
  5. 5.
    Czerwinska, M. E., Gasinska, E., Lesniak, A., Krawczyk, P., Kiss, A. K., Naruszewicz, M., and Bujalska-Zadrozny, M. (2018) Inhibitory effect of Ligustrum vulgare leaf extract on the development of neuropathic pain in a streptozotocin-induced rat model of diabetes, Phytomedicine, 49, 75–82, doi: Scholar
  6. 6.
    Gordeeva, A. E., Sharapov, M. G., Tikhonova, I. V., Chemeris, N. K., Fesenko, E. E., Novoselov, V. I., and Temnov, A. A. (2017) Vascular pathology of ischemia/reperfusion injury of rat small intestine, Cells Tissues Organs, 203, 353–364, doi: Scholar
  7. 7.
    Sharapov, M. G., Goncharov, R. G., Gordeeva, A. E., Novoselov, V. I., Antonova, O. A., Tikhaze, A. K., and Lankin, V. Z. (2016) Enzymatic antioxidant system of endotheliocytes, Dokl. Biochem. Biophys., 471, 410–412, doi: Scholar
  8. 8.
    Karaduleva, E. V., Mubarakshina, E. K., Sharapov, M. G., Volkova, A. E., Pimenov, O. Y., Ravin, V. K., Kokoz, Y. M., and Novoselov, V. I. (2016) Cardioprotective effect of mod ified peroxiredoxins in retrograde perfusion of isolated rat heart under conditions of oxidative stress, Bull. Exp. Biol. Med., 160, 639–642, doi: Scholar
  9. 9.
    Kaneto, H., Kajimoto, Y., Miyagawa, J., Matsuoka, T., Fujitani, Y., Umayahara, Y., Hanafusa, T., Matsuzawa, Y., Yamasaki, Y., and Hori, M. (1999) Beneficial effects of antioxidants in diabetes - possible protection of pancreatic β-cells against glucose toxicity, Diabetes, 48, 2398–2406.CrossRefGoogle Scholar
  10. 10.
    Novoselova, E. G., Khrenov, M. O., Parfenyuk, S. B., Novoselova, T. V., Lunin, S. M., and Fesenko, E. E. (2014) The NF-κB, IRF3 and SAPK/JNK signaling cascades of animal immune cells and their role in the progress of type 1 diabetes mellitus, Dokl. Biol. Sci., 457, 255–257, doi: Scholar
  11. 11.
    Novoselova, E. G., Glushkova, O. V., Lunin, S. M., Khrenov, M. O., Novoselova, T. V., Parfenyuk, S. B., and Fesenko, E. E. (2016) Signaling, stress response and apop- tosis in pre-diabetes and diabetes: restoring immune bal ance in mice with alloxan-induced type 1 diabetes mellitus, Intern. Immunopharm., 31, 24–31, doi: Scholar
  12. 12.
    Wu, D., and Yotnda, P. (2011) Production and detection of reactive oxygen species (ROS) in cancers, J. Vis. Exp., 57, e3357, doi: 10.3791/3357.Google Scholar
  13. 13.
    Bradford, M. M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utiliz ing the principle of protein-dye binding, Anal. Biochem., 72, 248–254.CrossRefGoogle Scholar
  14. 14.
    Weir, G. C., and Bonner-Weir, S. (2004) Five stages of evolving β-cell dysfunction during progression to diabetes, Diabetes, 53, Suppl. 3, S16-S21.Google Scholar
  15. 15.
    Hayden, M. S., and Ghosh, S. (2008) Shared principles in NF-κB signaling, Cell, 132, 344–362, doi: Scholar
  16. 16.
    Bubici, C., Papa, S., Dean, K., and Franzoso, G. (2006) Mutual cross-talk between reactive oxygen species and nuclear factor-kappa B: molecular basis and biological sig nificance, Oncogen, 25, 6731–6748, doi: Scholar
  17. 17.
    Vermeulen, L., De Wilde, G., Van Damme, P., Vanden Berghe, W., and Haegeman, G. (2003) Transcriptional acti vation of the NF-ϰB p65 subunit by mitogen- and stress- activated protein kinase-1 (MSK1), EMBO J., 22, 1313–1324, doi: Scholar
  18. 18.
    Nihira, K., Ando, Y., Yamaguchi, T., Kagami, Y., Miki, Y., and Yoshida, K. (2010) Pim-1 controls NF-kappaB signal ing by stabilizing RelA/p65, Cell Death Differ., 17, 689–698, doi: Scholar
  19. 19.
    Lawrence, T., Bebien, M., Liu, G. Y., Nizet, V., and Karin, M. (2005) IKKalpha limits macrophage NF-kappaB acti vation and contributes to the resolution of inflammation, Nature, 434, 1138–1143, doi: Scholar
  20. 20.
    Imai, Y., Dobrian, A. D., Morris, M. A., and Nadler, J. L. (2013) Islet inflammation: a unifying target for diabetes treatment? Trends Endocrinol. Metab., 24, 351–360, doi: Scholar
  21. 21.
    Oetjen, E., Blume, R., Cierny, I., Schlag, C., Kutschenko, A., Kratzner, R., Stein, R., and Knepel, W. (2007) Inhibition of MafA transcriptional activity and human insulin gene transcription by interleukin-1beta and mitogen activated protein kinase kinase kinase in pancreatic islet beta cells, Diabetologia, 50, 1678–1687, doi: Scholar
  22. 22.
    Maedler, K., Sergeev, P., Ris, F., Oberholzer, J., Joller-Jemelka, H. I., Spinas, G. A., Kaiser, N., Halban, P. A., and Donath, M. Y. (2002) Glucose-induced beta cell pro duction of IL-1beta contributes to glucotoxicity in human pancreatic islets, J. Clin. Invest., 110, 851–860, doi: Scholar
  23. 23.
    Mahadevan, J., Parazzoli, S., Oseid, E., Hertzel, A. V., Bernlohr, D. A., Vallerie, S. N., Liu, C. Q., Lopez, M., Harmon, J. S., and Robertson, R. P. (2013) Ebselen treat ment prevents islet apoptosis, maintains intranuclear Pdx-1 and MafA levels, and preserves β-cell mass and function in ZDF rats, Diabetes, 62, 3582–3588, doi: Scholar
  24. 24.
    Sharapov, M. G., Novoselov, V. I., and Gudkov, S. V. (2019) Radioprotective role of peroxiredoxin 6, Antioxidants (Basel), 8, E15, doi: Scholar
  25. 25.
    Barkett, M., and Gilmore, T. D. (1999) Control of apopto- sis by Rel/NF-kappa B transcription factors, Oncogene, 18, 6910–6924.CrossRefGoogle Scholar
  26. 26.
    Cardozo, A. K., Heimberg, H., Heremans, Y., Leeman, R., Kutlu, B., Kruhoffer, M., Orntoft, T., and Eizirik, D. L. (2001) A comprehensive analysis of cytokine-induced and nuclear factor-kappa B dependent genes in primary rat pancreatic beta-cells, J. Biol. Chem., 276, 879–886, doi: Scholar
  27. 27.
    Eizirik, D. L., and Mandrup-Poulsen, T. (2001) A choice of death - the signal-transduction of immune-mediated beta- cell apoptosis, Diabetologia, 44, 2115–2133, doi: Scholar
  28. 28.
    Larsen, P. M., Fey, S. J., Larsen, M. R., Nawrocki, A., Andersen, H. U., Kahler, H., Heilmann, C., Voss, M. C., Roepstorff, P., Pociot, F., Karlsen, A. E., and Nerup, J. (2001) Proteome analysis of interleukin-1beta-induced changes in protein expression in rat islets of Langerhans, Diabetes, 50, 1056–1063.CrossRefGoogle Scholar
  29. 29.
    Norlin, S., Ahlgren, U., and Edlund, H. (2005) Nuclear factor-kappa B activity in beta-cells is required for glucose- stimulated insulin secretion, Diabetes, 54, 125–132.CrossRefGoogle Scholar
  30. 30.
    Kim, S., Millet, I., Kim, H. S., Kim, J. Y., Han, M. S., Lee, M. K., Kim, K. W., Sherwin, R. S., Karin, M., and Lee, M. S. (2007) NF-kappa B prevents beta cell death and autoimmune diabetes in NOD mice, Proc. Natl. Acad. Sci. USA, 104, 1913–1918, doi: Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • E. G. Novoselova
    • 1
    Email author
  • O. V. Glushkova
    • 1
  • S. B. Parfenuyk
    • 1
  • M. O. Khrenov
    • 1
  • S. M. Lunin
    • 1
  • T. V. Novoselova
    • 1
  • M. G. Sharapov
    • 1
  • I. A. Shaev
    • 1
  • V. I. Novoselov
    • 1
  1. 1.Institute of Cell BiophysicsRussian Academy of SciencesPushchino, Moscow RegionRussia

Personalised recommendations