Advertisement

Biochemistry (Moscow)

, Volume 84, Issue 6, pp 627–636 | Cite as

A New Efficient Method for Production of Recombinant Antitumor Cytokine TRAIL and Its Receptor-Selective Variant DR5-B

  • A. V. Yagolovich
  • A. A. Artykov
  • D. A. Dolgikh
  • M. P. Kirpichnikov
  • M. E. GasparianEmail author
Article

Abstract

The cytokine TRAIL induces apoptosis in tumor cells of various origin without affecting normal cells. Clinical trials of TRAIL-receptor (DR4 and DR5) agonists (recombinant TRAIL or death receptors antibodies) have largely failed because most human tumors were resistant to them. Currently, a second generation of agents targeted at TRAIL-R with increased efficiency has been developed. To this end, we have developed DR5-B, a variant of TRAIL selectively interacting with DR5. We have developed a new efficient method for production of TRAIL and DR5-B using expression of these proteins in Escherichia coli strain SHuffle B. The proteins were isolated from the cytoplasmic fraction of cells and purified to a high degree of homogeneity using metal-affinity and ion-exchange chromatography. The protein yield was 211 and 173 mg from one liter of cell culture for DR5-B and TRAIL, respectively, which significantly exceeded the results obtained by other methods. DR5-B killed tumor cells of different origin more efficiently and rapidly compared with TRAIL. The resulting preparations can be used for the study of TRAIL signaling pathways and in preclinical and clinical trials as antitumor agents.

Keywords

cytokine TRAIL mutant variant DR5-B strain E. coli SHuffle B cancer therapy 

Abbreviations

DD

death domain

DR

death receptor

HFF

human foreskin fibroblasts

IPTG

isopropyl-β-D-1-thiogalac-topyranoside

MTT

3-[4,5-dimethylthiazol-2]-2,5-diphenyl tetrazolium bromide

OPG

osteoprotegerin

TRAIL

TNF-related apoptosis-inducing ligand

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Guicciardi, M. E., and Gores, G. J. (2009) Life and death by death receptors, FASEB J., 23, 1625–1637; doi:  https://doi.org/10.1096/fj.08-111005.CrossRefGoogle Scholar
  2. 2.
    Pan, G., O’Rourke, K., Chinnaiyan, A. M., Gentz, R., Ebner, R., Ni, J., and Dixit, V. M (1997) The receptor for the cytotoxic ligand TRAIL, Science, 276, 111–113; doi:  https://doi.org/10.1126/science.276.5309.111.CrossRefGoogle Scholar
  3. 3.
    Degli-Esposti, M. A., Smolak, P. J., Walczak, H., Waugh, J., Huang, C. P., DuBose, R. F., Goodwin, R. G., and Smith, C. A. (1997) Cloning and characterization of TRAIL-R3, a novel member of the emerging TRAIL receptor family, J. Exp. Med., 186, 1165–1170; doi:  https://doi.org/10.1084/jem.186.7.1165.CrossRefGoogle Scholar
  4. 4.
    Degli-Esposti, M. A., Dougall, W. C., Smolak, P. J., Waugh, J. Y., Smith, C. A., and Goodwin, R. G. (1997) The novel receptor TRAIL-R4 induces NF-kappaB and protects against TRAIL-mediated apoptosis, yet retains an incomplete death domain, Immunity, 7, 813–820; doi:  https://doi.org/10.1016/S1074-7613(00)80399-4.CrossRefGoogle Scholar
  5. 5.
    Merino, D., Lalaoui, N., Morizot, A., Schneider, P., Solary, E., and Micheau, O. (2006) Differential inhibition of TRAIL-mediated DR5-DISC formation by decoy receptors 1 and 2, Mol. Cell Biol., 26, 7046–7055; doi:  https://doi.org/10.1128/MCB.00520-06.CrossRefGoogle Scholar
  6. 6.
    Clancy, L., Mruk, K., Archer, K., Woelfel, M., Mongkolsapaya, J., Screaton, G., Lenardo, M. J., and Chan, F. K. (2005) Preligand assembly domain-mediated ligand-independent association between TRAIL receptor 4 (TR4) and TR2 regulates TRAIL-induced apoptosis, Proc. Natl. Acad. Sci. USA, 102, 18099–18104; doi:  https://doi.org/10.1073/pnas.0507329102.CrossRefGoogle Scholar
  7. 7.
    Nguyen, P. T., Nguyen, D., Chea, C., Miyauchi, M., Fujii, M., and Takata, T. (2018) Interaction between N-cadherin and decoy receptor-2 regulates apoptosis in head and neck cancer, Oncotarget, 9, 31516–31530; doi:  https://doi.org/10.18632/oncotar-get.25846.Google Scholar
  8. 8.
    Van Roosmalen, I. A., Quax, W. J., and Kruyt, F. A. (2014) Two death-inducing human TRAIL receptors to target in cancer: similar or distinct regulation and function? Biochem. Pharmacol., 91, 447–456; doi:  https://doi.org/10.1016/j.bcp.2014.08.010.CrossRefGoogle Scholar
  9. 9.
    Gasparian, M. E., Ostapchenko, V. G., Yagolovich, A. V., Tsygannik, I. N., Chernyak, B. V., Dolgikh, D. A., and Kirpichnikov, M. P. (2007) Overexpression and refolding of thioredoxin/TRAIL fusion from inclusion bodies and further purification of TRAIL after cleavage by enteropepti-dase, Biotechnol. Lett., 29, 1567–1573; doi:  https://doi.org/10.1007/s10529-007-9446-y.CrossRefGoogle Scholar
  10. 10.
    Lin, Z., Lei, H., and Cao, P. (2007) Expression, purification, and in vitro refolding of soluble tumor necrosis factor-related apoptosis inducing ligand (TRAIL), Protein Expr. Purif., 51, 276–282; doi:  https://doi.org/10.1016/j.pep.2006.07.026.CrossRefGoogle Scholar
  11. 11.
    Wang, D., and Shi, L. (2009) High-level expression, purification, and in vitro refolding of soluble tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), Appl. Biochem. Biotechnol., 157, 1–9; doi:  https://doi.org/10.1007/s12010-007-8079-x.CrossRefGoogle Scholar
  12. 12.
    Ashkenazi, A., Pai, R. C., Fong, S., Leung, S., Lawrence, D. A., Marsters, S. A., Blackie, C., Chang, L., McMurtrey, A. E., Hebert, A., DeForge, L., Koumenis, I. L., Lewis, D., Harris, L., Bussiere, J., Koeppen, H., Shahrokh, Z., and Schwall, R. H. (1999) Safety and antitumor activity of recombinant soluble Apo2 ligand, J. Clin. Invest., 104, 155–162; doi: 10.1172/JCI6926.CrossRefGoogle Scholar
  13. 13.
    Do, B. H., Nguyen, M. T., Song, J. A., Park, S., Yoo, J., and Jang, J. (2017) Soluble prokaryotic expression and purification of bioactive Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand, J. Microbiol. Biotechnol., 27, 2156–2164; doi:  https://doi.org/10.4014/jmb.1705.05070.CrossRefGoogle Scholar
  14. 14.
    Gasparian, M. E., Chernyak, B. V., Dolgikh, D. A., Yagolovich, A. V., Popova, E. N., Sycheva, A. M., Moshkovskii, S. A., and Kirpichnikov, M. P. (2009) Generation of new TRAIL mutants DR5-A and DR5-B with improved selectivity to death receptor 5, Apoptosis, 14, 778–787; doi:  https://doi.org/10.1007/s10495-009-0349-3.CrossRefGoogle Scholar
  15. 15.
    Gasparian, M. E., Bychkov, M. L., Yagolovich, A. V., Dolgikh, D. A., and Kirpichnikov, M. P. (2015) Mutations enhancing selectivity of antitumor cytokine TRAIL to DR5 receptor increase its cytotoxicity against tumor cells, Biochemistry (Moscow), 80, 1080–1091; doi:  https://doi.org/10.1134/S0006297915080143.CrossRefGoogle Scholar
  16. 16.
    Simpson, R. J. (2010) Rapid Coomassie blue staining of protein gels, Cold Spring Harb. Protoc., 2010, pdb.prot5413; doi:  https://doi.org/10.1101/pdb.prot5413.
  17. 17.
    Switzer, R. C., 3rd, Merril, C. R., and Shifrin, S. (1979) A highly sensitive silver stain for detecting proteins and pep-tides in polyacrylamide gels, Anal. Biochem., 98, 231–237; doi:  https://doi.org/10.1016/0003-2697(79)90732-2.CrossRefGoogle Scholar
  18. 18.
    Bradford, M. M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Anal. Biochem., 72, 248–254; doi:  https://doi.org/10.1016/0003-2697(76)90527-3.CrossRefGoogle Scholar
  19. 19.
    Lobstein, J., Emrich, C. A., Jeans, C., Faulkner, M., Riggs, P., and Berkmen, M. (2012) SHuffle, a novel Escherichia coli protein expression strain capable of correctly folding disulfide bonded proteins in its cytoplasm, Microb. Cell Fact., 11, 56; doi:  https://doi.org/10.1186/1475-2859-11-56.CrossRefGoogle Scholar
  20. 20.
    Reichelt, P., Schwarz, C., and Donzeau, M. (2006) Single step protocol to purify recombinant proteins with low endotoxin contents, Protein Expr. Purif., 46, 483–488; doi:  https://doi.org/10.1016/j.pep.2005.09.027.CrossRefGoogle Scholar
  21. 21.
    Szegezdi, E., van der Sloot, A. M., Mahalingam, D., O’Leary, L., Cool, R. H., Munoz, I. G., Montoya, G., Quax, W. J., de Jong, S., Samali, A., and Serrano, L. (2012) Kinetics in signal transduction pathways involving promiscuous oligomerizing receptors can be determined by receptor specificity: apoptosis induction by TRAIL, Mol. Cell. Proteom., 11, M111.013730; doi:  https://doi.org/10.1074/mcp.M111.013730.
  22. 22.
    Van Geelen, C. M., de Vries, E. G., Le, T. K., van Weeghel, R. P., and de Jong, S. (2003) Differential modulation of the TRAIL receptors and the CD95 receptor in colon carcinoma cell lines, Br. J. Cancer, 89, 363–373; doi:  https://doi.org/10.1038/sj.bjc.6601065.CrossRefGoogle Scholar
  23. 23.
    Valley, C. C., Lewis, A. K., Mudaliar, D. J., Perlmutter, J. D., Braun, A. R., Karim, C. B., Thomas, D. D., Brody, J. R., and Sachs, J. N. (2012) Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) induces death receptor 5 networks that are highly organized, J. Biol. Chem., 287, 21265–21278; doi:  https://doi.org/10.1074/jbc.M111.306480.CrossRefGoogle Scholar
  24. 24.
    Chekkat, N., Lombardo, C. M., Seguin, C., Lechner, M. C., Dufour, F., Nomine, Y., De Giorgi, M., Frisch, B., Micheau, O., Guichard, G., Altschuh, D., and Fournel, S. (2018) Relationship between the agonist activity of synthetic ligands of TRAIL-R2 and their cell surface binding modes, Oncotarget, 9, 15566–15578; doi:  https://doi.org/10.18632/onco-target.24526.CrossRefGoogle Scholar
  25. 25.
    Zhang, M., Wang, Z., Chi, L., Sun, J., and Shen, Y. (2018) Enhanced production of soluble tumor necrosis factor-related apoptosis-inducing ligand in Escherichia coli using a novel self-cleavable tag system Fh8-ΔI-CM, Protein Expr. Purif., 148, 16–23; doi:  https://doi.org/10.1016/j.pep.2018.03.005.CrossRefGoogle Scholar
  26. 26.
    Malyala, P., and Singh, M. (2008) Endotoxin limits in formulations for preclinical research, J. Pharm. Sci., 97, 2041–2044; doi:  https://doi.org/10.1002/jps.21152.CrossRefGoogle Scholar
  27. 27.
    Herbst, R. S., Eckhardt, S. G., Kurzrock, R., Ebbinghaus, S., O’Dwyer, P. J., Gordon, M. S., Novotny, W., Goldwasser, M. A., Tohnya, T. M., Lum, B. L., Ashkenazi, A., Jubb, A. M., and Mendelson, D. S. (2010) Phase I dose-escalation study of recombinant human Apo2L/TRAIL, a dual proapoptotic receptor agonist, in patients with advanced cancer, J. Clin. Oncol., 28, 2839–2846; doi:  https://doi.org/10.1200/JCO.2009.25.1991.CrossRefGoogle Scholar
  28. 28.
    Gasparian, M. E., Bychkov, M. L., Yagolovich, A. V., Kirpichnikov, M. P., and Dolgikh, D. A. (2017) The effect of cisplatin on cytotoxicity of anticancer cytokine TRAIL and its receptor-selective mutant variant DR5-B, Dokl. Biochem. Biophys., 477, 385–388; doi:  https://doi.org/10.1134/S1607672917060114.CrossRefGoogle Scholar
  29. 29.
    Soria, J. C., Smit, E., Khayat, D., Besse, B., Yang, X., Hsu, C. P., Reese, D., Wiezorek, J., and Blackhall, F. (2010) Phase 1b study of dulanermin (recombinant human Apo2L/TRAIL) in combination with paclitaxel, carbo-platin, and bevacizumab in patients with advanced non-squamous non-small-cell lung cancer, J. Clin. Oncol., 28, 1527–1533; doi:  https://doi.org/10.1200/JCO.2009.25.4847.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • A. V. Yagolovich
    • 1
    • 2
  • A. A. Artykov
    • 1
    • 2
  • D. A. Dolgikh
    • 1
    • 2
  • M. P. Kirpichnikov
    • 1
    • 2
  • M. E. Gasparian
    • 1
    Email author
  1. 1.Shemyakin and Ovchinnikov Institute of Bioorganic ChemistryRussian Academy of SciencesMoscowRussia
  2. 2.Faculty of BiologyLomonosov Moscow State UniversityMoscowRussia

Personalised recommendations