Advertisement

Biochemistry (Moscow)

, Volume 84, Issue 6, pp 608–616 | Cite as

The Repertoire of Human Antiglycan Antibodies and Its Dynamics in the First Year of Life

  • N. R. KhasbiullinaEmail author
  • N. V. Shilova
  • M. J. Navakouski
  • A. Yu. Nokel
  • O. Blixt
  • L. O. Kononov
  • Yu. A. Knirel
  • N. V. Bovin
Article

Abstract

The repertoire of antiglycan antibodies of peripheral blood was studied using a microarray containing 487 glycan antigens: fragments of mammalian glycans (N- and O-chains of glycoproteins, as well as glycolipids) and also bacterial poly-saccharides. The sera samples correspond to the third, sixth, and twelfth months of life. The infants were divided into four groups according to their nutrition type: breast milk, standard formula, and partially or extensively hydrolyzed formula. During the first year of life, the total amount of IgG decreased; presumably, the lifetime of maternal IgG in the newborns’ bloodstream is much greater than is generally assumed. At the same time, the IgM content was low during the first six months and increased significantly by the twelfth month. The antiglycan IgM repertoire of one-year-old infants was still different from that of their mothers, as well as from the repertoire of unrelated donors, in particular, by the absence of antibodies against the Galβ1-3GlcNAc (LeC) disaccharide, which is found in almost all healthy humans. It is noteworthy that the level of IgM of breast-fed infants was significantly lower than that of formula-fed by the twelfth month.

Keywords

natural antibodies glycans polysaccharides bacteria glycochip array infant nutrition innate immunity 

Abbreviations

BM

breast milk

EHF

extensively hydrolyzed formula (milk)

nAbs

natural antibodies

PHF

partially hydrolyzed formula (milk)

SF

standard formula (milk)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

We are thankful to our colleague from the University of Frontera (MD, PhD Jaime Inostroza) who provided sera samples.

Supplementary material

10541_2019_781_MOESM1_ESM.xlsx (39 kb)
Table S1. Glycans (oligo- and polysaccharides) printed on microarrays used in this work
10541_2019_781_MOESM2_ESM.xlsx (14 kb)
Table S2. Top-41 polysaccharides binding IgM antibodies in the sera of 12-month-old children and unrelated adult donors (with high intensity of fluorescent signals). The polysaccharides are sorted by the decreasing of fluorescent signals (medians of each of 10 donors) in the sera of adult donors. Each group of children fed by different types of nutrition (BM, breast milk; SF, standard formula; PHF, partially hydrolyzed formula; THF, totally hydrolyzed formula) contains five individuals. Positive signal in serum of each individual is marked with “+”. Glycans marked with gray color are practically absent in the sera of the children. RFU, relative fluorescent units; range 0-65535)
10541_2019_781_MOESM3_ESM.xlsx (834 kb)
Table S3. Glycans binding IgM in the sera on 20 infants at the age of 3, 6, and 12 months, their mothers, and unrelated adult donors. RFU, relative fluorescent units, range 0-65,535 RFU; M, median; Q1, Q3, median deviation represented as interquartile range. For the structure of the glycans, see Table S1
10541_2019_781_MOESM4_ESM.xlsx (866 kb)
Table S4. Glycans binding IgG in the sera on 20 infants at the age of 3, 6, and 12 months, their mothers, and unrelated adult donors. RFU, relative fluorescent units, range 0-65,535; M, median; Q1, Q3, median deviation represented as interquartile range. For the structure of the glycans, see Table S1

References

  1. 1.
    Mouthon, L., Lacroix-Desmazes, S., Nobrega, A., Barreau, C., Coutinho, A., and Kazatchkine, M. D. (1996) The self-reactive antibody repertoire of normal human serum IgM is acquired in early childhood and remains conserved throughout life, Scand. J. Immunol., 44, 243–251, doi:  https://doi.org/10.1046/j.1365-3083.1996.d01-306.x.CrossRefGoogle Scholar
  2. 2.
    Holodick, N. E., Rodriguez-Zhrubenko, N., and Hernandez, A. M. (2017) Defining natural antibodies, Front. Immunol., 8, 872, doi:  https://doi.org/10.3389/fimmu.2017.00872.CrossRefGoogle Scholar
  3. 3.
    Boyden, S. V. (1966) Natural antibodies and the immune response, Adv. Immunol., 5, 1–28.CrossRefGoogle Scholar
  4. 4.
    Lutz, H. U. (2007) Homeostatic roles of naturally occurring antibodies: an overview, J. Autoimmun., 29, 287–294, doi:  https://doi.org/10.1016/j.jaut.2007.07.007.CrossRefGoogle Scholar
  5. 5.
    Shoenfeld, Y., and Toubi, E. (2005) Protective autoanti-bodies: role in homeostasis, clinical importance, and therapeutic potential, Arthritis Rheum., 52, 2599–2606, doi:  https://doi.org/10.1002/art.21252.CrossRefGoogle Scholar
  6. 6.
    Vas, J., Gronwall, C., and Silverman, G. J. (2013) Fundamental roles of the innate-like repertoire of natural antibodies in immune homeostasis, Front. Immunol., 4, 4, doi:  https://doi.org/10.3389/fimmu.2013.00004.CrossRefGoogle Scholar
  7. 7.
    Boes, M. (2000) Role of natural and immune IgM antibodies in immune response, Mol. Immunol., 37, 1141–1149, doi:  https://doi.org/10.1016/S0161-5890(01)00025-6.CrossRefGoogle Scholar
  8. 8.
    Swiatczak, B., and Cohen, I. R. (2015) Gut feelings of safety: tolerance to the microbiota mediated by innate immune receptors, Microbiol. Immunol., 59, 573–585, doi:  https://doi.org/10.1111/1348-0421.12318.CrossRefGoogle Scholar
  9. 9.
    Dowling, D. J., and Levy, O. (2014) Ontogeny of early life immunity, Trends Immunol., 35, 299–310, doi:  https://doi.org/10.1016/j.it.2014.04.007.CrossRefGoogle Scholar
  10. 10.
    Basha, S., Surendran, N., and Pichichero, M. (2014) Immune response in neonates, Expert Rev. Clin. Immunol., 10, 1171–1184, doi:  https://doi.org/10.1586/1744666X.2014.942288.CrossRefGoogle Scholar
  11. 11.
    Ben-Hur, H., Gurevich, P., Elhayany, A., Avinoach, I., Achneider, D. F., and Zusman, U. (2005) Transport of maternal immunoglobulins through the human placental barrier in normal pregnancy and during inflammation, Int. J. Mol. Med., 16, 401–407, doi:  https://doi.org/10.3892/ijmm.16.3.401.Google Scholar
  12. 12.
    Van de Perre, P. (2003) Transfer of antibody via mother’s milk, Vaccine, 21, 3374–3376, doi:  https://doi.org/10.1016/S0264-410X(03)00336-0.CrossRefGoogle Scholar
  13. 13.
    Singh, R. K., Chang, H. W., Yan, D., Lee, K. M., Ucmak, D., Wong, K., Abrouk, M., Farahnik, B., Nakamura, M., Zhu, T. H., Bhutani, T., and Liao, W. (2017) Influence of diet on the gut microbiome and implications for human health, J. Transl. Med., 15, 73, doi:  https://doi.org/10.1186/s12967-017-1175-y.CrossRefGoogle Scholar
  14. 14.
    Arrieta, M. C., Stiemsma, L. T., Amenyogbe, N., Brown, E. M., and Finlay, B. (2014) The intestinal microbiome in early life: health and disease, Front. Immunol., 5, 427, doi:  https://doi.org/10.3389/fimmu.2014.00427.CrossRefGoogle Scholar
  15. 15.
    Francino, M. P. (2014) Early development of the gut microbiota and immune health, Pathogens, 3, 769–790, doi:  https://doi.org/10.3390/pathogens3030769.CrossRefGoogle Scholar
  16. 16.
    Bello-Gil, D., Khasbiullina, N. R., Shilova, N. V., Bovin, N. V., and Manez, R. (2017) Repertoire of BALB/c mice natural anti-carbohydrate antibodies: mice vs. humans difference, and otherness of individual animals, Front. Immunol., 8, 1449, doi:  https://doi.org/10.3389/fimmu.2017.01449.CrossRefGoogle Scholar
  17. 17.
    Vandamme, T. F. (2014) Use of rodents as models of human diseases, J. Pharm. Bioallied Sci., 6, 2–9, doi:  https://doi.org/10.4103/0975-7406.124301.CrossRefGoogle Scholar
  18. 18.
    Khasbiullina, N. R., and Bovin, N. V. (2015) Hypotheses of the origin of natural antibodies: a glycobiologist’s opinion, Biochemistry (Moscow), 80, 820–835, doi:  https://doi.org/10.1134/S0006297915070032.CrossRefGoogle Scholar
  19. 19.
    Bovin, N. V. (2017) Natural antibodies to glycans, Biochemistry (Moscow), 78, 786–797, doi:  https://doi.org/10.1134/S0006297913070109.CrossRefGoogle Scholar
  20. 20.
    Dotan, N., Altstock, R. T., Schwarz, M., and Dukler, A. (2006) Anti-glycan antibodies as biomarkers for diagnosis and prognosis, Lupus, 15, 442–450, doi:  https://doi.org/10.1191/0961203306lu2331oa.CrossRefGoogle Scholar
  21. 21.
    Blixt, O., Head, S., Mondala, T., Scanlan, C., Huflejt, M. E., Alvarez, R., Bryan, M. C., Fazio, F., Calarese, D., Stevens, J., Razi, N., Stevens, D. J., Skehel, J. J., van Die, I., Burton, D. R., Wilson, I. A., Cummings, R., Bovin, N., Wong, C. H., and Paulson, J. C. (2004) Printed covalent glycan array for ligand profiling of diverse glycan binding proteins, Proc. Natl. Acad. Sci. USA, 101, 17033–17038, doi:  https://doi.org/10.1073/pnas.0407902101.CrossRefGoogle Scholar
  22. 22.
    Robinson, D. P., and Klein, S. L. (2012) Pregnancy and pregnancy-associated hormones alter immune responses and disease pathogenesis, Horm. Behav., 62, 263–271, doi:  https://doi.org/10.1016/j.yhbeh.2012.02.023.CrossRefGoogle Scholar
  23. 23.
    Nair, R. R., Verma, P., and Singh, K. (2017) Immune-endocrine crosstalk during pregnancy, Gen. Comp. Endocrinol., 242, 18–23, doi:  https://doi.org/10.1016/j.ygcen.2016.03.003.CrossRefGoogle Scholar
  24. 24.
    Chugh, M., Piskarev, V., Galanina, O., Khasbiullina, N., Kadam, P., Shilova, N., Pazynina, N., Dobrochaeva, K., Bhanushali, P., Kozlov, N., Tupitsyn, N., and Bovin, N. (2017) Glycoprotein CA19.9 specific monoclonal antibodies recognize sialic acid independent glycotope, Tumor Biol., 39, doi:  https://doi.org/10.1177/1010428317725434.
  25. 25.
    Obukhova, P., Piskarev, V., Severov, V., Pazynina, G., Tuzikov, F., Navakouski, M., Shilova, N., and Bovin, N. (2011) Profiling of serum antibodies with printed glycan array: room for data misinterpretation, Glycoconj. J., 28, 501–505, doi:  https://doi.org/10.1007/s10719-011-9355-0.CrossRefGoogle Scholar
  26. 26.
    Simon, A. K., Hollander, G. A., and McMichael, A. (2015) Evolution of the immune system in humans from infancy to old age, Proc. Biol. Sci., 282, 20143085, doi:  https://doi.org/10.1098/rspb.2014.3085.CrossRefGoogle Scholar
  27. 27.
    Walkovich, K., and Connelly, J. A. (2016) Primary immunodeficiency in the neonate: early diagnosis and management, Semin. Fetal. Neonatal. Med., 21, 35–43, doi:  https://doi.org/10.1016/j.siny.2015.12.005.CrossRefGoogle Scholar
  28. 28.
    Borghesi, J., Mario, L. C., Rodrigues, M. N., Favaron, P. O., and Miglino, M. A. (2014) Immunoglobulin transport during gestation in domestic animals and humans - a review, Open J. Anim. Sci., 4, 323–336, doi:  https://doi.org/10.4236/ojas.2014.45041.CrossRefGoogle Scholar
  29. 29.
    Kollmann, T. R., Levy, O., Montgomery, R. R., and Goriely, S. (2012) Innate immune function by Toll-like receptors: distinct responses in newborns and the elderly, Immunity, 37, 771–783, doi:  https://doi.org/10.1016/j.immuni.2012.10.014.CrossRefGoogle Scholar
  30. 30.
    Erkeller-Yuksel, F. M., Deneys, V., Yuksel, B., Hannet, I., Hulstaert, F., Hamilton, C., Mackinnon, H., Turner Stokes, L., Munhyeshuli, V., Vanlangendonck, F., De Bruyere, M., Bach, B. A., and Lydyard, P. M. (1992) Age-related changes in human blood lymphocyte subpopulations, J. Pediatr., 120, 216–222, doi:  https://doi.org/10.1016/S0022-3476(05)80430-5.CrossRefGoogle Scholar
  31. 31.
    Berni Canani, R., Gilbert, J. A., and Nagler, C. R. (2015) The role of the commensal microbiota in the regulation of tolerance to dietary allergens, Curr. Opin. Allergy Clin. Immunol., 15, 243–249, doi:  https://doi.org/10.1097/ACI.0000000000000157.CrossRefGoogle Scholar
  32. 32.
    Wu, H. J., and Wu, E. (2012) The role of gut microbiota in immune homeostasis and autoimmunity, Gut Microbes, 3, 4–14, doi:  https://doi.org/10.4161/gmic.19320.CrossRefGoogle Scholar
  33. 33.
    Brandtzaeg, P. (2009) Mucosal immunity: induction, dissemination, and effector functions, Scand. J. Immunol., 70, 505–515, doi:  https://doi.org/10.1111/j.1365-3083.2009.02319.x.CrossRefGoogle Scholar
  34. 34.
    Levy, O. (2007) Innate immunity of the newborn: basic mechanisms and clinical correlates, Nat. Rev. Immunol., 7, 379–390, doi:  https://doi.org/10.1038/nri2075.CrossRefGoogle Scholar
  35. 35.
    Field, C. J. (2005) The immunological components of human milk and their effect on immune development in infants, J. Nutr., 135, 1–4, doi:  https://doi.org/10.1093/jn/135.1.1.CrossRefGoogle Scholar
  36. 36.
    Viemann, D., Schlenke, P., Hammers, H. J., Kirchner, H., and Kruse, A. (2000) Differential expression of the B cell-restricted molecule CD22 on neonatal B lymphocytes depending upon antigen stimulation, Eur. J. Immunol., 30, 550–559, doi: 10.1002/1521-4141(200002)30:2<550::AID-IMMU550>3.0.CO;2-X.CrossRefGoogle Scholar
  37. 37.
    Meffre, E., and Salmon, J. E. (2007) Autoantibody selection and production in early human life, J. Clin. Invest., 117, 598–601, doi:  https://doi.org/10.1172/JCI31578.CrossRefGoogle Scholar
  38. 38.
    Cooper, M. D. (2015) The early history of B cells, Nat. Rev. Immunol., 15, 191–197, doi:  https://doi.org/10.1038/nri3801.CrossRefGoogle Scholar
  39. 39.
    Kraus, M., Alimzhanov, M. B., Rajewsky, N., and Rajewsky, K. (2004) Survival of resting mature B lymphocytes depends on BCR signaling via the Ig alpha/beta heterodimer, Cell, 117, 787–800, doi:  https://doi.org/10.1016/j.cell.2004.05.014.CrossRefGoogle Scholar
  40. 40.
    Bovin, N., Obukhova, P., Shilova, N., Rapoport, E., Popova, I., Navakouski, M., Unverzagt, C., Vuskovic, M., and Huflejt, M. (2012) Repertoire of human natural anti-glycan immunoglobulins. Do we have auto-antibodies? Biochim. Biophys. Acta, 1820, 1373–1382, doi:  https://doi.org/10.1016/j.bbagen.2012.02.005.CrossRefGoogle Scholar
  41. 41.
    Jacob, F., Goldstein, D. R., Bovin, N. V., Pochechueva, T., Spengler, M., Caduff, R., Fink, D., Vuskovic, M. I., Huflejt, M. E., and Heinzelmann-Schwarz, V. (2012) Serum antiglycan antibody detection of nonmucinous ovarian cancers by using a printed glycan array, Int. J. Cancer, 130, 138–146, doi:  https://doi.org/10.1002/ijc.26002.CrossRefGoogle Scholar
  42. 42.
    Kletter, D., Singh, S., Bern, M., and Haab, B. B. (2013) Global comparisons of lectin-glycan interactions using a database of analyzed glycan array data, Mol. Cell. Proteomics, 12, 1026–1035, doi:  https://doi.org/10.1074/mcp.M112.026641.CrossRefGoogle Scholar
  43. 43.
    Gildersleeve, J. C., Wang, B., Achilefu, S., Tu, Z., and Xu, M. (2012) Glycan array analysis of the antigen repertoire targeted by tumor-binding antibodies, Bioorg. Med. Chem. Lett., 22, 6839–6843, doi:  https://doi.org/10.1016/j.bmcl.2012.09.055.CrossRefGoogle Scholar
  44. 44.
    Alkan Ozdemir, S., Ozer, E. A., Kose, S., Ilhan, O., Ozturk, C., and Sutcuoglu, S. J. (2016) Reference values of serum IgG and IgM levels in preterm and term newborns, Matern. Fetal. Neonatal. Med., 29, 972–976, doi:  https://doi.org/10.3109/14767058.2015.1027680.CrossRefGoogle Scholar
  45. 45.
    Madi, A., Hecht, I., Bransburg-Zabary, S., Merbl, Y., Pick, A., Zucker-Toledano, M., Quintana, F. J., Cohen, I. R., and Ben-Jacob, E. (2009) Organization of the autoantibody repertoire in healthy newborns and adults revealed by system level informatics of antigen microarray data, Proc. Natl. Acad. Sci. USA, 106, 14484–14489, doi:  https://doi.org/10.1073/pnas.0901528106.CrossRefGoogle Scholar
  46. 46.
    Vidarsson, G., Dekkers, G., and Rispens, T. (2014) IgG subclasses and allotypes: from structure to effector functions, Front. Immunol., 5, 520, doi:  https://doi.org/10.3389/fimmu.2014.00520.CrossRefGoogle Scholar
  47. 47.
    Einarsdottir, H. K., Selman, M. H., Kapur, R., Scherjon, S., Koeleman, C. A., Deelder, A. M., van der Schoot, C. E., Vidarsson, G., and Wuhrer, M. (2013) Comparison of the Fc glycosylation of fetal and maternal immunoglobulin G, Glycoconj. J., 30, 147–157, doi:  https://doi.org/10.1007/s10719-012-9381-6.CrossRefGoogle Scholar
  48. 48.
    Wuhrer, M., Stam, J. C., van de Geijn, F. E., Koeleman, C. A., Verrips, C. T., Dolhain, R. J., Hokke, C. H., and Deelder A. M. (2007) Glycosylation profiling of immuno-globulin G (IgG) subclasses from human serum, Proteomics, 7, 4070–4081, doi:  https://doi.org/10.1002/pmic.200700289.CrossRefGoogle Scholar
  49. 49.
    Ballard, O., and Morrow, A. L. (2013) Human milk composition: nutrients and bioactive factors, Pediatr. Clin. North Am., 60, 49–74, doi:  https://doi.org/10.1016/j.pcl.2012.CrossRefGoogle Scholar
  50. 50.
    Kieber-Emmons, T., Saha, S., Pachov, A., Monzavi-Karbassi, B., and Murali, R. (2014) Carbohydrate-mimetic peptides for pan anti-tumor responses, Front. Immunol., 5, 308, doi:  https://doi.org/10.3389/fimmu.2014.00308.CrossRefGoogle Scholar
  51. 51.
    Ohtaki, A., Kieber-Emmons, T., and Murali, R. (2013) Structure-based peptide mimicry of tumor-associated antigens, Monoclon. Antib. Immunodiagn. Immunother., 32, 1–5, doi: 10.1089/mab.CrossRefGoogle Scholar
  52. 52.
    Cusick, M. F., Libbey, J. E., and Fujinami, R. S. (2012) Molecular mimicry as a mechanism of autoimmune disease, Clin. Rev. Allergy Immunol., 42, 102–111, doi:  https://doi.org/10.1007/s12016-011-8294-7.CrossRefGoogle Scholar
  53. 53.
    Umair, S., Deng, Q., Roberts, J. M., Shaw, R. J., Sutherland, I. A., and Pernthaner, A. (2016) Identification of peptide mimics of a glycan epitope on the surface of parasitic nematode larvae, PLoS One, 11, doi:  https://doi.org/10.1371/jour-nal.pone.0162016.
  54. 54.
    Vyas, N. K., Vyas, M. N., Chervenak, M. C., Bundle, D. R., Pinto, B. M., and Quiocho, F. A. (2003) Structural basis of peptide-carbohydrate mimicry in an antibody-combining site, Proc. Natl. Acad. Sci. USA, 100, 15023–15028, doi: 0.1073/pnas.2431286100.CrossRefGoogle Scholar
  55. 55.
    Huflejt, M. E., Vuskovic, M., Vasiliu, D., Xu, H., Obukhova, P., Shilova, N., Tuzikov, A., Galanina, O., Arun, B., Lu, K., and Bovin, N. (2009) Anti-carbohydrate antibodies of normal sera: findings, surprises and challenges, Mol. Immunol., 46, 3037–3049, doi:  https://doi.org/10.1016/j.molimm.2009.06.010.CrossRefGoogle Scholar
  56. 56.
    Lee, E., Pandey, N. B., and Popel, A. S. (2014) Lymphatic endothelial cells support tumor growth in breast cancer, Sci. Rep., 4, 5853, doi:  https://doi.org/10.1038/srep05853.CrossRefGoogle Scholar
  57. 57.
    Muthana, S. M., Campbell, C. T., and Gildersleeve, J. C. (2012) Modifications of glycans: biological significance and therapeutic opportunities, ACS Chem. Biol., 7, 31–43, doi:  https://doi.org/10.1021/cb2004466.CrossRefGoogle Scholar
  58. 58.
    Zhang, S. L., Zhang, H. S., Cordon Cardo, C., Reuter, V. E., Singhal, A. K., Lloyd, K. O., and Livingston, P. O. (1997) Selection of tumor antigens as targets for immune attack using immunohistochemistry: 2. Blood group-related antigens, Int. J. Cancer, 73, 50–56, doi: 10.1002/(SICI)1097-0215(19970926)73:1<50::AID-IJC9>3.0.CO;2-0.CrossRefGoogle Scholar
  59. 59.
    Smorodin, E. P., Kurtenkov, O. A., Sergeyev, B. L., Chuzmarov, V. I., and Afanasyev, V. P. (2007) The relation of serum anti-(GalNAc-beta) and para-Forssman disac-charide IgG levels to the progression and histological grading of gastrointestinal cancer, Exp. Oncol., 29, 1–6.Google Scholar
  60. 60.
    Hoja-Lukowicz, D., Lenczowski, P., Carpentieri, A., Pochec, E., Artemenko, K. A., Bergquist, J., and Litynska, A. (2013) L1CAM from human melanoma carries a novel type of N-glycan with Galβ1-4Galβ1-motif. Involvement of N-linked glycans in migratory and invasive behavior of melanoma cells, Glycoconj. J., 30, 205–225, doi:  https://doi.org/10.1007/s10719-012-9374-5.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • N. R. Khasbiullina
    • 1
    • 2
    Email author
  • N. V. Shilova
    • 2
  • M. J. Navakouski
    • 2
  • A. Yu. Nokel
    • 2
  • O. Blixt
    • 3
  • L. O. Kononov
    • 1
  • Yu. A. Knirel
    • 1
  • N. V. Bovin
    • 2
  1. 1.Zelinsky Institute of Organic ChemistryRussian Academy of SciencesMoscowRussia
  2. 2.Shemyakin-Ovchinnikov Institute of Bioorganic ChemistryRussian Academy of SciencesMoscowRussia
  3. 3.University of CopenhagenFrederiksbergDenmark

Personalised recommendations