Advertisement

Biochemistry (Moscow)

, Volume 84, Issue 6, pp 583–592 | Cite as

Biological Role of Actin Isoforms in Mammalian Cells

  • V. B. Dugina
  • G. S. Shagieva
  • P. B. KopninEmail author
Review
  • 3 Downloads

Abstract

Actin plays an important role in cellular adhesion, muscle and non-muscle contractility, migration, polarization, mitosis, and meiosis. Investigation of specific mechanisms underlying these processes is essential not only for fundamental research but also for clinical applications, since modulations of actin isoforms are directly or indirectly correlate with severe pathologies. In this review we summarize the isoform-specific functions of actin associated with adhesion structures, motility and division of normal and tumor cells; alterations of the expression and structural organization of actin isoforms in normal and tumor cells. Selective regulation of cytoplasmic β- or γ-actin expression determines functional diversity between isoforms: β-actin plays the predominant role in contraction and intercellular adhesion, and γ-actin is responsible for the cellular plasticity and motility. Similar data were obtained in different epithelial and mesenchymal neoplastic cell cultures, as well as in immunomorphological comparison of normal human tissues with tumor analogues. Reorganization of the actin cytoskeleton and cell–cell contacts is essential for proliferation control and acquisition of invasiveness in epithelial tumors.

Keywords

cytoplasmic actin isoforms β-actin γ-actin neoplastic transformation tumor cells cytoskeleton 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Pollard, T. D., and Cooper, J. A. (2009) Actin, a central player in cell shape and movement, Science, 326, 12081212, doi:  https://doi.org/10.1126/science.1175862.CrossRefGoogle Scholar
  2. 2.
    Vandekerckhove, J., and Weber, K. (1978) At least six different actins are expressed in a higher mammal: an analysis based on the amino acid sequence of the amino-terminal tryptic peptide, J. Mol. Biol., 126, 783–802. doi:  https://doi.org/10.1016/0022-2836(78)90020-7.CrossRefGoogle Scholar
  3. 3.
    Kabsch, W., and Vandekerckhove, J. (1992) Structure and function of actin, Annu. Rev. Biophys. Biomol. Struct., 21, 49–76. doi:  https://doi.org/10.1146/annurevbb.21.060192.000405.CrossRefGoogle Scholar
  4. 4.
    Gunning, P., Ponte, P., Kedes, L., Eddy, R., and Shows, T. (1984) Chromosomal location of the coexpressed human skeletal and cardiac actin genes, Proc. Natl. Acad. Sci. USA, 81, 1813–1817. doi:  https://doi.org/10.1073/pnas.81.6.1813.CrossRefGoogle Scholar
  5. 5.
    Hightower, R. C., and Meagher, R. B. (1986) The molecular evolution of actin, Genetics, 114, 315–332.Google Scholar
  6. 6.
    Garrels, J. I., and Gibson, W. (1976) Identification and characterization of multiple forms of actin, Cell, 9, 793805, doi:  https://doi.org/10.1016/0092-8674(76)90142-2.CrossRefGoogle Scholar
  7. 7.
    Rubenstein, P. A. (1990) The functional importance of multiple actin isoforms, Bioessays, 12, 309–315. doi:  https://doi.org/10.1002/bies.950120702.CrossRefGoogle Scholar
  8. 8.
    Schutt, C. E., Myslik, J. C., Rozycki, M. D., Goonesekere, N. C., and Lindberg, U. (1993) The structure of crystalline profilin-beta-actin, Nature, 365, 810–816. doi:  https://doi.org/10.1038/365810a0.CrossRefGoogle Scholar
  9. 9.
    Rubenstein, P. A., and Martin, D. J. (1983) NH2-terminal processing of actin in mouse L-cells in vivo, J. Biol. Chem., 258, 3961–3966.Google Scholar
  10. 10.
    Drazic, A., Aksnes, H., Marie, M., Boczkowska, M., Varland, S., Timmerman, E., Foyn, H., Glomnes, N., Rebowski, G., Impens, F., Gevaert, K., Dominguez, R., and Arnesen, T. (2018) NAA80 is actin’s N-terminal acetyl-transferase and regulates cytoskeleton assembly and cell motility, Proc. Natl. Acad. Sci. USA, 115, 4399–4404. doi:  https://doi.org/10.1073/pnas.1718336115.CrossRefGoogle Scholar
  11. 11.
    Goris, M., Magin, R. S., Foyn, H., Myklebust, L. M., Varland, S., Ree, R., Drazic, A., Bhambra, P, Stove, S. I., Baumann, M., Haug, B. E., Marmorstein, R., and Arnesen, T. (2018) Structural determinants and cellular environment define processed actin as the sole substrate of the N-terminal acetyltransferase NAA80, Proc. Natl. Acad. Sci. USA, 115, 4405–4410. doi:  https://doi.org/10.1073/pnas.1719251115.CrossRefGoogle Scholar
  12. 12.
    Bergeron, S. E., Zhu, M., Thiem, S. M., Friderici, K. H., and Rubenstein, P. A. (2010) Ion-dependent polymerization differences between mammalian beta- and gammanonmuscle actin isoforms, J. Biol. Chem., 285, 1608716095, doi  https://doi.org/10.1074/jbc.M110.110130.CrossRefGoogle Scholar
  13. 13.
    Sheterline, P., Clayton, J., and Sparrow, J. (1995) Actin, Protein Profile, 2, 1–103.Google Scholar
  14. 14.
    Muller, M., Diensthuber, R. P, Chizhov, I., Claus, P., Heissler, S. M., Preller, M., Taft, M. H., and Manstein, D. J. (2013) Distinct functional interactions between actin iso-forms and nonsarcomeric myosins, PLoS One, 8, e70636, doi:  https://doi.org/10.1371/journal.pone.0070636.CrossRefGoogle Scholar
  15. 15.
    Larsson, H., and Lindberg, U. (1988) The effect of divalent cations on the interaction between calf spleen profilin and different actins, Biochim. Biophys. Acta, 953, 95–105. doi:  https://doi.org/10.1016/0167-4838(88)90013-1.CrossRefGoogle Scholar
  16. 16.
    Ohshima, S., Abe, H., and Obinata, T. (1989) Isolation of profilin from embryonic chicken skeletal muscle and evaluation of its interaction with different actin isoforms, J. Biochem., 5, 855–857.CrossRefGoogle Scholar
  17. 17.
    Weber, A., Nachmias, V. T, Pennise, C. R., Pring, M., and Safer, D. (1992) Interaction of thymosin beta 4 with muscle and platelet actin: implications for actin sequestration in resting platelets, Biochemistry, 31, 6179–6185. doi:  https://doi.org/10.1021/bi00142a002.CrossRefGoogle Scholar
  18. 18.
    Namba, Y., Ito, M., Zu, Y, Shigesada, K., and Maruyama, K. (1992) Human T cell L-plastin bundles actin filaments in a calcium-dependent manner, J. Biochem., 112, 503507.CrossRefGoogle Scholar
  19. 19.
    Shuster, C. B., and Herman, I. M. (1995) Indirect association of ezrin with F-actin: isoform specificity and calcium sensitivity, J. Cell Biol., 128, 837–848. doi:  https://doi.org/10.1083/jcb.128.5.837.CrossRefGoogle Scholar
  20. 20.
    Yao, X., Cheng, L., and Forte, J. G. (1996) Biochemical characterization of ezrin—actin interaction, J. Biol. Chem., 271, 7224–7229. doi:  https://doi.org/10.1074/jbc.271.12.7224.CrossRefGoogle Scholar
  21. 21.
    Shuster, C. B., Lin, A. Y, Nayak, R., and Herman, I. M. (1996) Beta cap73: a novel beta actin-specific binding protein, Cell. Motil. Cytoskeleton, 35, 175–187. doi: 10.1002/(SICI)1097-0169(1996)35:3<175::AID-CM1>3.0.CO;2-8.CrossRefGoogle Scholar
  22. 22.
    Winder, S. J., Hemmings, L., Maciver, S. K., Bolton, S. J., Tinsley, J. M., Davies, K. E., Critchley, D. R., and Kendrick-Jones, J. (1995) Utrophin actin binding domain: analysis of actin binding and cellular targeting, J. Cell Sci., 108 (Pt. 1), 63–71.Google Scholar
  23. 23.
    Tzima, E., Trotter, P. J., Orchard, M. A., and Walker, J. H. (2000) Annexin V relocates to the platelet cytoskeleton upon activation and binds to a specific isoform of actin, Eur. J. Biochem., 267, 4720–4730. doi:  https://doi.org/10.1006/excr.1999.4553.CrossRefGoogle Scholar
  24. 24.
    Gunning, P., Weinberger, R., Jeffrey, P., and Hardeman, E. (1998) Isoform sorting and the creation of intracellular compartments, Annu. Rev. Cell Dev. Biol., 14, 339–372. doi:  https://doi.org/10.1146/annurev.cellbio.14.1.339.CrossRefGoogle Scholar
  25. 25.
    Manstein, D. J., and Mulvihill, D. P. (2016) Tropomyosinmediated regulation of cytoplasmic myosins, Traffic, 17, 872–877. doi:  https://doi.org/10.1111/tra.12399.CrossRefGoogle Scholar
  26. 26.
    Von der Ecken, J., Heissler, S. M., Pathan-Chhatbar, S., Manstein, D. J., Raunser, S., and Cryo, E. M. (2016) Structure of a human cytoplasmic actomyosin complex at near-atomic resolution, Nature, 534, 724–728. doi:  https://doi.org/10.1038/nature18295.CrossRefGoogle Scholar
  27. 27.
    Gunning, P., Mohun, T., Ng, S. Y., Ponte, P., and Kedes, L. (1984) Evolution of the human sarcomeric-actin genes: evidence for units of selection within the 3’-untranslated regions of the mRNAs, J. Mol. Evol., 20, 202–214. doi:  https://doi.org/10.1007/BF02104727.CrossRefGoogle Scholar
  28. 28.
    Yaffe, D., Nudel, U., Mayer, Y, and Neuman, S. (1985) Highly conserved sequences in the 3’ untranslated region of mRNAs coding for homologous proteins in distantly related species, Nucleic Acids Res., 13, 3723–3737. doi:  https://doi.org/10.1093/nar/13.10.3723.CrossRefGoogle Scholar
  29. 29.
    Treisman, R., Alberts, A. S., and Sahai, E. (1998) Regulation of SRF activity by Rho family GTPases, Cold Spring Harb. Symp. Quant. Biol., 63, 643–651. doi: https://doi.org/10.1101/sqb.1998.63.643.CrossRefGoogle Scholar
  30. 30.
    Posern, G., and Treisman, R. (2006) Actin’ together: serum response factor, its cofactors and the link to signal transduction, Trends Cell Biol., 16, 588–596. doi:  https://doi.org/10.1016/j.tcb.2006.09.008.CrossRefGoogle Scholar
  31. 31.
    Singer, R. H. (1992) The cytoskeleton and mRNA localization, Curr Opin. Cell Biol., 4, 15–19. doi:  https://doi.org/10.1016/0955-0674(92)90053-F.CrossRefGoogle Scholar
  32. 32.
    Gunning, P., Hardeman, E., Wade, R., Ponte, P., Bains, W., Blau, H. M., and Kedes, L. (1987) Differential patterns of transcript accumulation during human myogenesis, Mol. Cell. Biol, 197, 4100–4114. doi:  https://doi.org/10.1128/MCB.7.11.4100.CrossRefGoogle Scholar
  33. 33.
    Latham, V. M., Kislauskis, E. H., Singer, R. H., and Ross, A. F. (1994) Beta-actin mRNA localization is regulated by signal transduction mechanisms, J. Cell Biol., 126, 12111219, doi:  https://doi.org/10.1083/jcb.126.5.1211.CrossRefGoogle Scholar
  34. 34.
    Oleynikov, Y., and Singer, R. H. (2003) Real-time visualization of ZBP1 association with beta-actin mRNA during transcription and localization, Curr. Biol., 13, 199–207. doi:  https://doi.org/10.1016/S0960-9822(03)00044-7.CrossRefGoogle Scholar
  35. 35.
    Kislauskis, E. H., Li, Z., Singer, R. H., and Taneja, K. L. (1993) Isoform-specific 3’-untranslated sequences sort alpha-cardiac and beta-cytoplasmic actin messenger RNAs to different cytoplasmic compartments, J. Cell Biol., 123, 165–172. doi:  https://doi.org/10.1083/jcb.123.1.165.CrossRefGoogle Scholar
  36. 36.
    Lawrence, J. B., and Singer, R. H. (1986) Intracellular localization of messenger RNAs for cytoskeletal proteins, Cell, 45, 407–415. doi:  https://doi.org/10.1016/0092-8674(86)90326-0.CrossRefGoogle Scholar
  37. 37.
    Shestakova, E. A., Singer, R. H., and Condeelis, J. (2001) The physiological significance of beta-actin mRNA localization in determining cell polarity and directional motility, Proc. Natl. Acad. Sci. USA, 98, 7045–7050. doi:  https://doi.org/10.1073/pnas.121146098.CrossRefGoogle Scholar
  38. 38.
    Ross, A. F., Oleynikov, Y., Kislauskis, E. H., Taneja, K. L., and Singer, R. H. (1997) Characterization of a beta-actin mRNA zipcode-binding protein, Mol. Cell. Biol., 17, 21582165, doi:  https://doi.org/10.1128/MCB.17.4.2158.CrossRefGoogle Scholar
  39. 39.
    Kislauskis, E. H., Zhu, X., and Singer, R. H. (1997) Betaactin messenger RNA localization and protein synthesis augment cell motility, J. Cell Biol., 136, 1263–1270. doi:  https://doi.org/10.1083/jcb.136.6.1263.CrossRefGoogle Scholar
  40. 40.
    Wang, W., Goswami, S., Lapidus, K., Wells, A. L., Wyckoff, J. B., Sahai, E., Singer, R. H., Segall, J. E., and Condeelis, J. S. (2004) Identification and testing of a gene expression signature of invasive, carcinoma cells within primary mammary tumors, Cancer Res., 64, 8585–8594. doi:  https://doi.org/10.1158/0008-5472.CAN-04-1136.CrossRefGoogle Scholar
  41. 41.
    Condeelis, J., and Singer, R. H. (2005) How and why does beta-actin mRNA target? Biol. Cell, 97, 97–110. doi:  https://doi.org/10.1042/BC20040063.CrossRefGoogle Scholar
  42. 42.
    Katz, Z. B., Wells, A. L., Park, H. Y, Wu, B., Shenoy, S. M., and Singer, R. H. (2012) β-Actin mRNA compartmentalization enhances focal adhesion stability and directs cell migration, Genes Dev., 26, 1885–1890. doi:  https://doi.org/10.1101/gad.190413.112.CrossRefGoogle Scholar
  43. 43.
    Hill, M. A., and Gunning, P. (1993) Beta and gamma actin mRNAs are differentially located within myoblasts, J. Cell Biol, 122, 825–832. doi:  https://doi.org/10.1083/jcb.122.4.825.CrossRefGoogle Scholar
  44. 44.
    Hannan, A. J., Gunning, P., Jeffrey, P L., and Weinberger, R. P (1998) Structural compartments within neurons: developmentally regulated organization of microfilament isoform mRNA and protein, Mol. Cell. Neurosci., 11, 289304, doi:  https://doi.org/10.1006/mcne.1998.0693.CrossRefGoogle Scholar
  45. 45.
    Karakozova, M., Kozak, M., Wong, C. C. L., Bailey, A. O., Yates, J. R., Mogilner, A., Zebroski, H., and Kashina, A. (2006) Arginylation of beta-actin regulates actin cytoskeleton and cell motility, Science, 313, 192–196. doi:  https://doi.org/10.1126/science.1129344.CrossRefGoogle Scholar
  46. 46.
    Kashina, A. S. (2006) Differential arginylation of actin isoforms: the mystery of the actin N-terminus, Trends Cell Biol., 16, 610–615. doi:  https://doi.org/10.1016/j.tcb.2006.10.001.CrossRefGoogle Scholar
  47. 47.
    Wong, C. C. L., Xu, T., Rai, R., Bailey, A. O., Yates, J. R., Wolf, Y. I., Zebroski, H., and Kashina, A. (2007) Global analysis of posttranslational protein arginylation, PLoS Biol., 5, e258, doi:  https://doi.org/10.1371/journal.pbio.0050258.CrossRefGoogle Scholar
  48. 48.
    Behrmann, E., Muller, M., Penczek, P A., Mannherz, H. G., Manstein, D. J., and Raunser, S. (2012) Structure of the rigor actin—tropomyosin—myosin complex, Cell, 150, 327–338. doi:  https://doi.org/10.1016/j.cell.2012.05.037.CrossRefGoogle Scholar
  49. 49.
    Abe, A., Saeki, K., Yasunaga, T., and Wakabayashi, T. (2000) Acetylation at the N-terminus of actin strengthens weak interaction between actin and myosin, Biochem. Biophys. Res. Commun., 268, 14–19. doi:  https://doi.org/10.1006/bbrc.1999.2069.CrossRefGoogle Scholar
  50. 50.
    Wiame, E., Tahay, G., Tyteca, D., Vertommen, D., Stroobant, V., Bommer, G. T, and van Schaftingen, E. (2018) NAT6 acetylates the N-terminus of different forms of actin, FEBS J, 285, 3299–316. doi:  https://doi.org/10.1111/febs.14605.CrossRefGoogle Scholar
  51. 51.
    Otey, C. A., Kalnoski, M. H., and Bulinski, J. C. (1987) Identification and quantification of actin isoforms in vertebrate cells and tissues, J. Cell. Biochem., 34, 113–124. doi:  https://doi.org/10.1002/jcb.240340205.CrossRefGoogle Scholar
  52. 52.
    Chaponnier, C., and Gabbiani, G. (2004) Pathological situations characterized by altered actin isoform expression, J. Pathol, 204, 386–395. doi:  https://doi.org/10.1002/path.1635.CrossRefGoogle Scholar
  53. 53.
    Ampe, C., and van Troys, M. (2017) Mammalian actins: isoform-specific functions and diseases, Handb. Exp. Pharmacol, 235, 1–37. doi: 10.1007/164_2016_43.Google Scholar
  54. 54.
    Perrin, B. J., and Ervasti, J. M. (2010) The actin gene family: function follows isoform, Cytoskeleton (Hoboken), 67, 630–634. doi: 10.1002/cm.20475.CrossRefGoogle Scholar
  55. 55.
    Belyantseva, I. A., Perrin, B. J., Sonnemann, K. J., Zhu, M., Stepanyan, R., McGee, J., Frolenkov, G. I., Walsh, E. J., Friderici, K. H., Friedman, T. B., and Ervasti, J. M. (2009) Gamma-actin is required for cytoskeletal maintenance but not development, Proc. Natl. Acad. Sci. USA, 106, 9703–9708. doi:  https://doi.org/10.1073/pnas.0900221106.CrossRefGoogle Scholar
  56. 56.
    Bunnell, T. M., and Ervasti, J. M. (2010) Delayed embryonic development and impaired cell growth and survival in Actg1 null mice, Cytoskeleton (Hoboken), 67, 564–572. doi:  https://doi.org/10.1002/cm.20467.CrossRefGoogle Scholar
  57. 57.
    Latham, S. L., Ehmke, N., Reinke, P. Y. A., Taft, M. H., Eicke, D., Reindl, T., Stenzel, W., Lyons, M. J., Friez, M. J., Lee, J. A., Hecker, R., Fruhwald, M. C., Becker, K., Neuhann, T. M., Horn, D., Schrock, E., Niehaus, I., Sarnow, K., Grutzmann, K., Gawehn, L., Klink, B., Rump, A., Chaponnier, C., Figueiredo, C., Knofler, R., Manstein, D. J., and Di Donato, N. (2018) Variants in exons 5 and 6 of ACTB cause syndromic thrombocytopenia, Nat. Commun, 9, 4250, doi:  https://doi.org/10.1038/s41467-018-06713-0.CrossRefGoogle Scholar
  58. 58.
    Dugina, V., Zwaenepoel, I., Gabbiani, G., Clement, S., Chaponnier, C., Clement, S., and Chaponnier, C. (2009) Beta- and gamma-cytoplasmic actins display distinct distribution and functional diversity, J. CellSci., 122, 2980–2988. doi:  https://doi.org/10.1242/jcs.041970.Google Scholar
  59. 59.
    Franke, W. W, Stehr, S., Stumpp, S., Kuhn, C., Heid, H., Rackwitz, H. R., Schnolzer, M., Baumann, R., Holzhausen, H. J., and Moll, R. (1996) Specific immunohistochemical detection of cardiac/fetal alpha-actin in human cardiomyocytes and regenerating skeletal muscle cells, Differentiation, 60, 245–250. doi:  https://doi.org/10.1046/j.14320436.1996.6040245.x.CrossRefGoogle Scholar
  60. 60.
    Shagieva, G. S., Domnina, L. V., Chipysheva, T. A., Ermilova, V. D., Chaponnier, C., and Dugina, V. B. (2012) Actin isoforms and reorganization of adhesion junctions in epithelial-to-mesenchymal transition of cervical carcinoma cells, Biochemistry (Moscow), 77, 1266–1276. doi:  https://doi.org/10.1134/S0006297912110053.CrossRefGoogle Scholar
  61. 61.
    Baranwal, S., Naydenov, N. G., Harris, G., Dugina, V., Morgan, K. G., Chaponnier, C., and Ivanov, A. I. (2012) Nonredundant roles of cytoplasmic β- and γ-actin isoforms in regulation of epithelial apical junctions, Mol. Biol. Cell, 23, 3542–3553. doi:  https://doi.org/10.1091/mbc.E12-02-0162.CrossRefGoogle Scholar
  62. 62.
    Dugina, V. B., Chipysheva, T. A., Ermilova, V. D., Gabbiani, D., Chaponnier, C., and Vasil’ev, Iu. M. (2008) Distribution of actin isoforms in normal, dysplastic, and tumorous human breast cells, Arkh. Patol., 70, 28–31.Google Scholar
  63. 63.
    Dugina, V., Arnoldi, R., Janmey, P. A., and Chaponnier, C. (2012) Actin, in The Cytoskeleton and Human Disease (Cavallaris, M., ed.) Humana Press-Springer, pp. 3–28, doi:  https://doi.org/10.1007/978-1-61779-788-0.CrossRefGoogle Scholar
  64. 64.
    Brockmann, C., Huarte, J., Dugina, V., Challet, L., Rey, E., Conne, B., Swetloff, A., Nef, S., Chaponnier, C., and Vassalli, J.-D. (2011) Beta- and gamma-cytoplasmic actins are required for meiosis in mouse oocytes, Biol. Reprod., 85, 1025–1039. doi:  https://doi.org/10.1095/biolreprod.111.091736.CrossRefGoogle Scholar
  65. 65.
    Pokorna, E., Jordan, P. W., O’Neill, C. H., Zicha, D., Gilbert, C. S., and Vesely, P. (1994) Actin cytoskeleton and motility in rat sarcoma cell populations with different metastatic potential, Cell Motil. Cytoskeleton, 28, 25–33. doi:  https://doi.org/10.1002/cm.970280103.CrossRefGoogle Scholar
  66. 66.
    Sahai, E., and Marshall, C. J. (2003) Differing modes of tumour cell invasion have distinct requirements for Rho/ROCK signalling and extracellular proteolysis, Nat. Cell Biol, 5, 711–719. doi:  https://doi.org/10.1038/ncb1019.CrossRefGoogle Scholar
  67. 67.
    Leavitt, J., Gunning, P., Kedes, L., and Jariwalla, R. (1985) Smooth muscle alpha-actin is a transformation-sensitive marker for mouse NIH 3T3 and Rat-2 cells, Nature, 316, 840–842.CrossRefGoogle Scholar
  68. 68.
    Okamoto-Inoue, M., Taniguchi, S., Sadano, H., Kawano, T., Kimura, G., Gabbiani, G., and Baba, T. (1990) Alteration in expression of smooth muscle alpha-actin associated with transformation of rat 3Y1 cells, J. Cell Sci., 96, 631–637.Google Scholar
  69. 69.
    Witt, D. P., Brown, D. J., and Gordon, J. A. (1983) Transformation-sensitive isoactin in passaged chick embryo fibroblasts transformed by Rous sarcoma virus, J. Cell Biol., 96, 1766–1771. doi:  https://doi.org/10.1083/jcb.96.6.1766.CrossRefGoogle Scholar
  70. 70.
    Vandekerckhove, J., Leavitt, J., Kakunaga, T., and Weber, K. (1980) Coexpression of a mutant beta-actin and the two normal beta- and gamma-cytoplasmic actins in a stably transformed human cell line, Cell, 22, 893–899. doi:  https://doi.org/10.1016/0092-8674(80)90566-8.CrossRefGoogle Scholar
  71. 71.
    Leavitt, J., Ng, S. Y., Aebi, U., Varma, M., Latter, G., Burbeck, S., Kedes, L., and Gunning, P. (1987) Expression of transfected mutant beta-actin genes: alterations of cell morphology and evidence for autoregulation in actin pools, Mol. Cell. Biol, 7, 2457–2466. doi:  https://doi.org/10.1128/MCB.7.7.2457.CrossRefGoogle Scholar
  72. 72.
    Sadano, H., Taniguchi, S., Kakunaga, T., and Baba, T. (1988) cDNA cloning and sequence of a new type of actin in mouse B16 melanoma, J. Biol. Chem., 263, 15868–15871.Google Scholar
  73. 73.
    Lapidus, K., Wyckoff, J., Mouneimne, G., Lorenz, M., Soon, L., Condeelis, J. S., and Singer, R. H. (2007) ZBP1 enhances cell polarity and reduces chemotaxis, J. Cell Sci., 120, 3173–3178. doi:  https://doi.org/10.1242/jcs.000638.CrossRefGoogle Scholar
  74. 74.
    Shum, M. S. Y., Pasquier, E., Po’uha, S. T, O’Neill, G. M., Chaponnier, C., Gunning, P. W, and Kavallaris, M. (2011) γ-Actin regulates cell migration and modulates the ROCK signaling pathway, FASEB J., 25, 4423–4433. doi:  https://doi.org/10.1096/fj.11-185447.CrossRefGoogle Scholar
  75. 75.
    Dong, X., Han, Y., Sun, Z., and Xu, J. (2018) Actin gamma 1, a new skin cancer pathogenic gene, identified by the biological feature-based classification, J. Cell. Biochem., 119, 1406–1419. doi:  https://doi.org/10.1002/jcb.26301.CrossRefGoogle Scholar
  76. 76.
    Tondeleir, D., Lambrechts, A., Muller, M., Jonckheere, V., Doll, T, Vandamme, D., Bakkali, K., Waterschoot, D., Lemaistre, M., Debeir, O., Decaestecker, C., Hinz, B., Staes, A., Timmerman, E., Colaert, N., Gevaert, K., Vandekerckhove, J., and Ampe, C. (2012) Cells lacking β-actin are genetically reprogrammed and maintain conditional migratory capacity, Mol. Cell. Proteom., 11, 255–271. doi:  https://doi.org/10.1074/mcp.M111.015099.CrossRefGoogle Scholar
  77. 77.
    Shagieva, G., Domnina, L., Makarevich, O., Chernyak, B., Skulachev, V., and Dugina, V. (2017) Depletion of mitochondrial reactive oxygen species downregulates epithelial-to-mesenchymal transition in cervical cancer cells, Oncotarget, 8, 4901–4913. doi:  https://doi.org/10.18632/oncotarget.13612.CrossRefGoogle Scholar
  78. 78.
    Pawlak, G., and Helfman, D. M. (2001) Cytoskeletal changes in cell transformation and tumorigenesis, Curr. Opin. Genet. Dev., 11, 41–47. doi:  https://doi.org/10.1016/S0959-437X(00)00154-4.CrossRefGoogle Scholar
  79. 79.
    Pollack, R., Osborn, M., and Weber, K. (1975) Patterns of organization of actin and myosin in normal and transformed cultured cells, Proc. Natl. Acad. Sci. USA, 72, 994–998.CrossRefGoogle Scholar
  80. 80.
    Rubin, R. W., Warren, R. H., Lukeman, D. S., and Clements, E. (1978) Actin content and organization in normal and transformed cells in culture, J. Cell Biol., 78, 2835.CrossRefGoogle Scholar
  81. 81.
    Verderame, M., Alcorta, D., Egnor, M., Smith, K., and Pollack, R. (1980) Cytoskeletal F-actin patterns quantitated with fluorescein isothiocyanate-phalloidin in normal and transformed cells, Proc. Natl. Acad. Sci. USA, 77, 66246628, doi:  https://doi.org/10.1073/pnas.77.11.6624.
  82. 82.
    Dugina, V. B., Ermilova, V. D., Chemeris, G. Iu., and Chipysheva, T. A. (2010) Actins and keratins in the diagnosis of human basal-like breast cancer, Arkh. Patol., 72, 1215.Google Scholar
  83. 83.
    Agapova, L. S., Chernyak, B. V., Domnina, L. V., Dugina, V. B., Efimenko, A. Y., Fetisova, E. K., Ivanova, O. Y., Kalinina, N. I., Khromova, N. V., Kopnin, B. P., Kopnin, P. B., Korotetskaya, M. V., Lichinitser, M. R., Lukashev, A. L., Pletjushkina, O. Y, Popova, E. N., Skulachev, M. V., Shagieva, G. S., Stepanova, E. V., Titova, E. V., Tkachuk, V. A., Vasiliev, J. M., and Skulachev, V. P (2008) Mitochondria-targeted plastoquinone derivatives as tools to interrupt execution of the aging program. 3. Inhibitory effect of SkQ1 on tumor development from p53-deficient cells, Biochemistry (Moscow), 73, 1300–1316. doi:  https://doi.org/10.1134/S0006297908120031.CrossRefGoogle Scholar
  84. 84.
    Titova, E., Shagieva, G., Ivanova, O., Domnina, L., Domninskaya, M., Strelkova, O., Khromova, N., Kopnin, P., Chernyak, B., Skulachev, V., and Dugina, V. (2018) Mitochondria-targeted antioxidant SkQ1 suppresses fibrosarcoma and rhabdomyosarcoma tumour cell growth, Cell Cycle, 17, 1797–1811. doi:  https://doi.org/10.1080/15384101.2018.1496748.CrossRefGoogle Scholar
  85. 85.
    Dugina, V., Khromova, N., Rybko, V., Blizniukov, O., Shagieva, G., Chaponnier, C., Kopnin, B., and Kopnin, P. (2015) Tumor promotion by γ and suppression by β nonmuscle actin isoforms, Oncotarget, 6, 14556–14571. doi:  https://doi.org/10.18632/oncotarget.3989.CrossRefGoogle Scholar
  86. 86.
    Dugina, V., Alieva, I., Khromova, N., Kireev, I., Gunning, P. W, and Kopnin, P. (2016) Interaction of microtubules with the actin cytoskeleton via cross-talk of EB1-containing +TIPs and γ-actin in epithelial cells, Oncotarget, 7, 72699–72715. doi:  https://doi.org/10.18632/oncotarget.12236.CrossRefGoogle Scholar
  87. 87.
    Dugina, V., Shagieva, G., Khromova, N., and Kopnin, P. (2018) Divergent impact of actin isoforms on cell cycle regulation, Cell Cycle, 17, 2610–2621. doi:  https://doi.org/10.1080/15384101.2018.1553337.CrossRefGoogle Scholar
  88. 88.
    Novikova, M. V., Rybko, V. A., Kochatkov, A. V., Khromova, N. V., Bogomazova, S. Y., Dugina, V. B., Lyadov, V. K., and Kopnin, P. B. (2017) A change in the expression of membrane-associated proteins and cytoplasmic actin isoforms in the progression of human colon tumors, Arkh. Patol., 79, 15–21. doi:  https://doi.org/10.17116/patol201779215-21.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Belozersky Institute of Physico-Chemical BiologyLomonosov Moscow State UniversityMoscowRussia
  2. 2.Institute of Carcinogenesis, Blokhin National Medical Research Centre of Oncology, PublicHealth Ministry of Russian FederationMoscowRussia

Personalised recommendations