Advertisement

Biochemistry (Moscow)

, Volume 84, Issue 5, pp 570–574 | Cite as

Properties of Rhodobacter sphaeroides Reaction Centers with the Ile→Tyr Substitution at Positions L177 and M206

  • T. Yu. FufinaEmail author
  • G. K. Selikhanov
  • I. I. Proskuryakov
  • V. A. Shuvalov
  • L. G. Vasilieva
Article
  • 3 Downloads

Abstract

Studying pigment-protein interactions in the photosynthetic reaction centers (RCs) is important for the understanding of detailed mechanisms of the photochemical process. This paper describes spectral and photochemical characteristics, pigment composition, and stability of the Rhodobacter sphaeroides RCs with the I(L177)Y and I(M206)Y amino acid substitutions. The obtained data are compared with the properties of I(L177)H, I(L177)D, and I(M206)H RCs reported previously. It is shown that the I(L177)Y and I(M206)Y mutations cause a similar shift of the QYP band in the absorption spectra of the mutant RCs and do not affect the distribution of the electron spin density within the photo-oxidized P+ dimer. The differences in the position and amplitude of the QYB band in the I(L177)Y and I(M206)Y RCs were determined. The results indicate the possibility of new pigment-protein interactions in the vicinity of monomeric bacteriochlorophylls in the A and B chains, which might be of interest for future research.

Keywords

Rhodobacter sphaeroides photosynthetic reaction center pigment-protein interactions purple bacteria site-directed mutagenesis 

Abbreviations

BA and BB

monomeric bacteriochlorophylls

BChl

bacteriochlorophyll

BPheo

bacteriopheophytin

P

bacteriochlorophyll special pair

P+

oxidized primary electron donor

PA and PB

bacteriochlorophylls from the special pair

RC

reaction center

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Allen, J. P., Feher, G., Yeates, T O., Komiya, H., and Rees, D. C. (1987) Structure of the reaction center from Rhodobacter sphaeroides R-26: the cofactors, Proc. Natl. Acad. Sci. USA, 84, 5730–5734; doi: 1073/pnas.84.16.5730.CrossRefGoogle Scholar
  2. 2.
    Bolgarina, T. I., Khatypov, R. A., Vasil’eva, L. G., Shkuropatov, A. Ya., and Shuvalov, V. A. (2004) Substitution of isoleucine M206 residue by histidine in the Rhodobacter sphaeroides reaction centers causes changes in the structure of the special bacteriochlorophyll pair molecule, Dokl. Biochem. Biophys., 394, 26–29; doi: 1023/B:DOBI.0000017147.33235.b4.CrossRefGoogle Scholar
  3. 3.
    Khatypov, R. A., Vasil’eva, L. G., Fufina, T. Yu., Bolgarina, T. I., and Shuvalov, V. A. (2005) Substitution of isoleucine L177 by histidine affects the pigment composition and properties of the reaction center of the purple bacterium Rhodobacter sphaeroides, Biochemistry (Moscow), 70, 1256–1261; doi: 1007/s10541-005-0256-3.CrossRefGoogle Scholar
  4. 4.
    Vasilieva, L. G., Fufina, T. Y., Gabdulkhakov, A. G., Leonova, M. M., Khatypov, R. A., and Shuvalov, V. A. (2012) The site-directed mutation I(L177)H in Rba. sphaeroides reaction center affects coordination of PA and BB bacteriochlorophylls, Biochim. Biophys. Acta, 1817, 1407–1417; doi: 1016/j.bbabio.2012.02.008.CrossRefGoogle Scholar
  5. 5.
    Vasil’eva, L. G., Fufina, T. Yu., Gabdulkhakov, A. G., and Shuvalov, V. A. (2015) Different effects of identical symmetry-related mutations near the bacteriochlorophyll dimer in the photosynthetic reaction center of Rhodobacter sphaeroides, Biochemistry (Moscow), 80, 647–653; doi: 1134/S0006297915060012.CrossRefGoogle Scholar
  6. 6.
    Parson, W. W., Chu, Z. T., and Warshel, A. (1990) Electrostatic control of charge separation in bacterial photosynthesis, Biochim. Biophys. Acta, 1017, 251–272; doi: 1016/0005-2728(90)90192-7.CrossRefGoogle Scholar
  7. 7.
    Alden, R. G., Parson, W. W., Chu, Z. T., and Warshel, A. (1996) Orientation of the OH dipole of tyrosine (M)210 and its effect on electrostatic energies in photosynthetic bacterial reaction centers, J. Phys. Chem., 100, 16761–16770; doi: 1021/jp961271s.CrossRefGoogle Scholar
  8. 8.
    Yakovlev, A. G., Vasilieva, L. G., Shkuropatov, A. Ya., Bolgarina, T. I., Shkuropatova, V. A., and Shuvalov, V. A. (2003) Mechanism of charge separation and stabilization of separated charges in reaction centers of Chloroflexus aurantiacus and of YM210W(L) mutants of Rhodobacter sphaeroides excited by 20 fs pulses at 90 K, J. Phys. Chem. A, 107, 8330–8338; doi: 1021/jp0300647.CrossRefGoogle Scholar
  9. 9.
    Fufina, T. Y., Vasilieva, L. G., Khatypov, R. A., Shkuropatov, A. Y, and Shuvalov, V. A. (2007) Substitution of isoleucine L177 by histidine in Rhodobacter sphaeroides reaction center results in the covalent binding of PA bacteriochlorophyll to the L subunit, FEBS Lett., 581, 5769–5773; doi: 1016/j.febslet.2007.11.032.CrossRefGoogle Scholar
  10. 10.
    Van der Rest, M., and Gingras, G. (1974) The pigment complement of the photosynthetic reaction center isolated from Rhodospirillum rubrum J. Biol. Chem., 249, 6446–6453.Google Scholar
  11. 11.
    Lendzian, F., Huber, M., Isaacson, R. A., Endeward, B., Plato, M., Bonigk, B., Mobius, K., Lubitz, W., and Feher, G. (1993) The electronic structure of the primary donor cation radical in Rhodobacter sphaeroides R-26: ENDOR and TRIPLE resonance studies in single crystals of reaction centers, Biochim. Biophys. Acta, 1183, 139–160; doi: 1016/0005-2728(93)90013-6.CrossRefGoogle Scholar
  12. 12.
    DeLano, W. L. (2002) The PyMOL Molecular Graphics System, DeLano Scientific, San Carlos (http://pymol.sourceforge.net/).Google Scholar
  13. 13.
    Williams, J. C., Alden, R. G., Murchison, H. A., Peloquin, J. M., Woodbury, N. W., and Allen, J. P. (1992) Effects of mutations near the bacteriochlorophylls in reaction centers from Rhodobacter sphaeroides, Biochemistry, 31, 11029–11037; doi: 1021/bi00160a012.CrossRefGoogle Scholar
  14. 14.
    Spiedel, D., Roszak, A. W., McKendrick, K., McAuley, K. E., Fyfe, P. K., Nabedryk, E., Breton, J., Robert, B., Cogdell, R. J., Isaacs, N. W., and Jones, M. R. (2002) Tuning of the optical and electrochemical properties of the primary donor bacteriochlorophylls in the reaction centre from Rhodobacter sphaeroides: spectroscopy and structure, Biochim. Biophys. Acta, 1554, 75–93; doi: 1016/S0005-2728(02)00215-3.CrossRefGoogle Scholar
  15. 15.
    Leonova, M. M., Fufina, T. Yu., Shuvalov, V. A., and Vasil’eva, L. G. (2014) Investigation of pigment-protein interactions in photosynthetic reaction center of purple bacteria, in Current Problems of Photosynthesis (Allakhverdiev, S. I., Rubin, A. B., and Shuvalov, V. A., eds.) [in Russian], Vol. 1, Izhevsk Institute of Computer Studies, Moscow-Izhevsk, pp. 157–196.Google Scholar
  16. 16.
    Frolov, D., Marsh, M., Crouch, L. I., Fyfe, P. K., Robert, B., van Grondelle, R., Hadfield, A., and Jones, M. R. (2010) Structural and spectroscopic consequences of hexacoordination of a bacteriochlorophyll cofactor in the Rhodobacter sphaeroides reaction center, Biochemistry, 49, 1882–1892; doi: 1021/bi901922t.CrossRefGoogle Scholar
  17. 17.
    Fufina, T. Yu., Vasil’eva, L. G., Khatypov, R. A., and Shuvalov, V. A. (2011) Properties of Rhodobacter sphaeroides photosynthetic reaction center with double amino acid substitution I(L177)H+H(M182)L, Biochemistry (Moscow), 76, 450–454; doi: 1134/S0006297911040079.CrossRefGoogle Scholar
  18. 18.
    Nolting, B. (2005) Methods in Modern Biophysics, Springer-Verlag, Berlin.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • T. Yu. Fufina
    • 1
    Email author
  • G. K. Selikhanov
    • 2
  • I. I. Proskuryakov
    • 1
  • V. A. Shuvalov
    • 1
  • L. G. Vasilieva
    • 1
  1. 1.Institute of Basic Biological ProblemsRussian Academy of SciencesPushchino, Moscow RegionRussia
  2. 2.Institute of Protein ResearchRussian Academy of SciencesPushchino, Moscow RegionRussia

Personalised recommendations