Advertisement

Biochemistry (Moscow)

, Volume 84, Issue 5, pp 520–528 | Cite as

Effect of Leucine M196 Substitution by Histidine on Electronic Structure of the Primary Electron Donor and Electron Transfer in Reaction Centers from Rhodobacter sphaeroides

  • A. A. Zabelin
  • T. Yu. Fufina
  • A. M. Khristin
  • R. A. Khatypov
  • V. A. Shkuropatova
  • V. A. Shuvalov
  • L. G. Vasilieva
  • A. Ya. ShkuropatovEmail author
Article
  • 1 Downloads

Abstract

In our recent X-ray study, we demonstrated that substitution of the natural leucine residue M196 with histidine in the reaction center (RC) from Rhodobacter (Rba.) sphaeroides leads to formation of a close contact between the genetically introduced histidine and the primary electron donor P (bacteriochlorophylls (BChls) PA and PB dimer) creating a novel pigment—protein interaction that is not observed in native RCs. In the present work, the possible nature of this novel interaction and its effects on the electronic properties of P and the photochemical charge separation in isolated mutant RCs L(M196)H are investigated at room temperature using steady-state absorption spectroscopy, light-induced difference FTIR spectroscopy, and femtosecond transient absorption spectroscopy. The results are compared with the data obtained for the RCs from Rba. sphaeroides pseudo-wild type strain. It is shown that the L(M196)H mutation results in a decrease in intensity and broadening of the long-wavelength Qy absorption band of P at ∼865 nm. Due to the mutation, there is also weakening of the electronic coupling between BChls in the radical cation P+ and increase in the positive charge localization on the PA molecule. Despite the significant perturbations of the electronic structure of P, the mutant RCs retain high electron transfer rates and quantum yield of the P+Q A state (QA is the primary quinone acceptor), which is close to the one observed in the native RCs. Comparison of our results with the literature data suggests that the imidazole group of histidine M196 forms a π-hydrogen bond with the π-electron system of the PB molecule in the P dimer. It is likely that the specific (T-shaped) spatial organization of the π-hydrogen interaction and its potential heterogeneity in relation to the bonding energy is, at least partially, the reason that this type of interaction between the protein and the pigment and quinone cofactors is not realized in the native RCs.

Keywords

bacterial reaction center amino acid replacement primary electron donor electronic structure electron transfer Rhodobacter sphaeroides 

Abbreviations

ΔA

absorbance change

BA

monomeric bacteriochlorophyll in the active cofactors branch

BChl

bacteriochlorophyll

BPheo

bacteriopheophytin

EADS

evolution-associated decay spectra

FTIR

Fourier transform infrared spectroscopy

HA and HB

BPheo molecules in the active and inactive cofactor branches, respectively

P

primary electron donor, BChl dimer

PA and PB

BChl molecules constituting P

psWt

pseudo-wild type

QA

primary quinone acceptor

QB

secondary quinone acceptor

Rba. sphaeroides

Rhodobacter sphaeroides

RC

reaction center

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Liao, S. M., Du, Q. S., Meng, J. Z., Pang, Z. W., and Huang, R. B. (2013) The multiple roles of histidine in protein interactions, Chem. Cent. J., 7, 44–55, DOI:  https://doi.org/10.1186/1752-153X-7-44.CrossRefGoogle Scholar
  2. 2.
    Fufina, T. Y., Vasilieva, L. G., Gabdulkhakov, A. G., and Shuvalov, V. A. (2015) The L(M196)H mutation in Rhodobacter sphaeroides reaction center results in new electrostatic interactions, Photosynth. Res., 125, 23–29, DOI:  https://doi.org/10.1007/s11120-014-0062-0.CrossRefGoogle Scholar
  3. 3.
    Lutz, M., and Mantele, W. (1991) Vibrational spectroscopy of chlorophylls, in Chlorophylls (Scheer, H., ed.) CRC Press, Boca Raton, FL, pp. 855–902.Google Scholar
  4. 4.
    Breton, J., Nabedryk, E., and Parson, W. W. (1992) A new infrared electronic transition of the oxidized primary electron donor in bacterial reaction centers: a way to assess resonance interactions between the bacteriochlorophylls, Biochemistry, 31, 7503–7510, DOI:  https://doi.org/10.1021/bi00148a010.CrossRefGoogle Scholar
  5. 5.
    Gabdulkhakov, A. G., Fufina, T. Y., Vasilieva, L. G., Mueller, U., and Shuvalov, V. A. (2013) Expression, purification, crystallization and preliminary X-ray structure analysis of wild-type and L(M196)H mutant Rhodobacter sphaeroides reaction centres, Acta. Crystallogr. Sect. F, 69, 506–509, DOI:  https://doi.org/10.1107/S1744309113006398.CrossRefGoogle Scholar
  6. 6.
    Zabelin, A. A., Fufina, T. Y., Vasilieva, L. G., Shkuropatova, V. A., Zvereva, M. G., Shkuropatov, A. Y., and Shuvalov, V. A. (2009) Mutant reaction centers of Rhodobacter sphaeroides I(L177)H with strongly bound bacteriochlorophyll a: structural properties and pigment-protein interactions, Biochemistry (Moscow), 74, 68–74, DOI:  https://doi.org/10.1134/S0006297909010106.CrossRefGoogle Scholar
  7. 7.
    Khatypov, R. A., Khristin, A. M., Fufina, T. Yu., and Shuvalov, V. A. (2017) An alternative pathway of light-induced transmembrane electron transfer in photosynthetic reaction centers of Rhodobacter sphaeroides, Biochemistry (Moscow), 82, 692–697, DOI:  https://doi.org/10.1134/S0006297917060050.CrossRefGoogle Scholar
  8. 8.
    Van Stokkum, I. H. M., Larsen, D. S., and van Grondelle, R. (2004) Global and target analysis of time-resolved spectra, Biochim. Biophys. Acta, 1657, 82–104, DOI:  https://doi.org/10.1016/j.bbabio.2004.04.011.CrossRefGoogle Scholar
  9. 9.
    Snellenburg, J. J., Laptenok, S. P., Seger, R., Mullen, K. M., and van Stokkum, I. H. M. (2012) Glotaran: a Java-based graphical user interface for the R package TIMP, J. Stat. Soft., 49, 1–22, DOI:  https://doi.org/10.18637/jss.v049.i03.CrossRefGoogle Scholar
  10. 10.
    Thompson, M. A., Zerner, M. C., and Fajer, J. (1991) A theoretical examination of the electronic structure and excited states of the bacteriochlorophyll b dimer from Rhodopseudomonas viridis, J. Phys. Chem., 95, 5693–5700, DOI:  https://doi.org/10.1021/j100167a058.CrossRefGoogle Scholar
  11. 11.
    Parson, W. W., and Warshel, A. (1987) Spectroscopic properties of photosynthetic reaction centers. 2. Application of the theory to Rhodopseudomonas viridis, J. Am. Chem. Soc., 109, 6152–6163, doi:  https://doi.org/10.1021/ja00254a040 CrossRefGoogle Scholar
  12. 12.
    Naberdyk, E., Allen, J. P., Taguchi, A. K. W., Williams, J. C., Woodbury, N. W, and Breton, J. (1993) Fourier transform infrared study of the primary electron donor in chromatophores of Rhodobacter sphaeroides with reaction centers genetically modified at residues M160 and L131, Biochemistry, 32, 13879–13885, DOI:  https://doi.org/10.1021/bi00213a017.CrossRefGoogle Scholar
  13. 13.
    Reimers, J. R., and Hush, N. S. (2003) Modeling the bacterial photosynthetic reaction center. VII. Full simulation of the intervalence hole-transfer absorption spectrum of the special-pair radical cation, J. Chem. Phys., 119, 3262–3277, DOI:  https://doi.org/10.1063/1.1589742.CrossRefGoogle Scholar
  14. 14.
    Malferrari, M., Turina, P., Francia, F., Mezzetti, A., Leibl, W., and Venturoli, G. (2015) Dehydration affects the electronic structure of the primary electron donor in bacterial photosynthetic reaction centers: evidence from visible-NIR and light-induced difference FTIR spectroscopy, Photochem. Photobiol. Sci., 14, 238–251, doi: https://doi.org/10.1039/c4pp00245h.CrossRefGoogle Scholar
  15. 15.
    Sun, C., Carey, A.-M., Gao B.-R., Wraight, C. A., Woodbury, N. W., and Lin, S. (2016) Ultrafast electron transfer kinetics in the LM dimer of bacterial photosynthetic reaction center from Rhodobacter sphaeroides, J. Phys. Chem. B, 120, 5395–5404, DOI:  https://doi.org/10.1021/acs.jpcb.6b05082.CrossRefGoogle Scholar
  16. 16.
    Arlt, T., Schmidt, S., Kaiser, W., Lauterwasser, C., Meyer, M., Scheer, H., and Zinth, W. (1993) The accessory bacteriochlorophyll: a real electron carrier in primary photosynthesis, Proc. Natl. Acad. Sci. USA, 90, 11757–11761, DOI:  https://doi.org/10.1073/pnas.90.24.11757.CrossRefGoogle Scholar
  17. 17.
    Shkuropatov, A. Ya., and Shuvalov, V. A. (1993) Electron transfer in pheophytin a-modified reaction centers from Rhodobacter sphaeroides (R-26), FEBS Lett., 322, 168–172, DOI:  https://doi.org/10.1016/0014-5793(93)81561-D.CrossRefGoogle Scholar
  18. 18.
    Kennis, J. T. M., Shkuropatov, A. Ya., van Stokkum, I. H. M., Gast, P., Hoff, A. J., Shuvalov, V. A., and Aartsma, T. J. (1997) Formation of a long-lived P+BA state in plant pheophytin-exchanged reaction centers of Rhodobacter sphaeroides R26 at low temperature, Biochemistry, 36, 16231–16238, DOI:  https://doi.org/10.1021/bi9712605.CrossRefGoogle Scholar
  19. 19.
    Zinth, W., and Wachtveitl, J. (2005) The first picoseconds in bacterial photosynthesis — ultrafast electron transfer for the efficient conversion of light energy, Chem. Phys. Chem., 6, 871–880, DOI:  https://doi.org/10.1002/cphc.200400458.CrossRefGoogle Scholar
  20. 20.
    Khatypov, R. A., Khmelnitskiy, A. Yu., Khristin, A. M., Fufina, T. Yu., Vasilieva, L. G., and Shuvalov, V. A. (2012) Primary charge separation within P870* in wild type and heterodimer mutants in femtosecond time domain, Biochim. Biophys. Acta, 1817, 1392–1398, DOI:  https://doi.org/10.1016/j.bbabio.2011.12.007.CrossRefGoogle Scholar
  21. 21.
    Vasilieva, L. G., Fufina, T. Y., Gabdulkhakov, A. G., Leonova, M. M., Khatypov, R. A., and Shuvalov, V. A. (2012) The site-directed mutation I(L177)H in Rhodobacter sphaeroides reaction center affects coordination of PA and BB bacteriochlorophylls, Biochim. Biophys. Acta, 1817, 1407–1417, DOI:  https://doi.org/10.1016/j.bbabio.2012.02.008.CrossRefGoogle Scholar
  22. 22.
    DeLano, W. L. (2002) The PyMOL molecular graphics system (http://www.pymol.org).Google Scholar
  23. 23.
    Lin, X., Murchison, H. A., Nagarajan, V., Parson, W. W., Allen, J. P., and Williams, J. C. (1994) Specific alteration of the oxidation potential of the electron donor in reaction centers from Rhodobacter sphaeroides, Proc. Natl. Acad. Sci. USA, 91, 10265–10269, DOI:  https://doi.org/10.1073/pnas.91.22.10265.CrossRefGoogle Scholar
  24. 24.
    Allen, J. P., and Williams, J. C. (1995) Relationship between the oxidation potential of the bacteriochlorophyll dimer and electron transfer in photosynthetic reaction centers, J. Bioenerg. Biomembr., 27, 275–283, DOI:  https://doi.org/10.1007/BF02110097.CrossRefGoogle Scholar
  25. 25.
    Williams, J. C., Alden, R. G., Murchison, H. A., Peloquin, J. M., Woodbury, N. W., and Allen, J. P. (1992) Effects of mutations near the bacteriochlorophylls in reaction centers from Rhodobacter sphaeroides, Biochemistry, 31, 11029–11037, DOI:  https://doi.org/10.1021/bi00160a012.CrossRefGoogle Scholar
  26. 26.
    Kaupp, M. (2002) The function of photosystem I. Quantum chemical insight into the role of tryptophan—quinone interactions, Biochemistry, 41, 2895–2900, DOI:  https://doi.org/10.1021/bi0159783.CrossRefGoogle Scholar
  27. 27.
    Wang, Y., Mao, L., and Hu, X. (2004) Insight into the structural role of carotenoids in the photosystem I: a quantum chemical analysis, Biophys. J., 86, 3097–3111, DOI:  https://doi.org/10.1016/S0006-3495(04)74358-1.CrossRefGoogle Scholar
  28. 28.
    Allen, J. P., and Williams, J. C. (2006) The influence of protein interactions on the properties of the bacteriochlorophyll dimer in reaction centers, in Chlorophylls and Bacteriochlorophylls: Biochemistry, Biophysics, Functions and Applications (Grimm, B., Porra, R. J., Rudiger, W., and Scheer, H., eds.) Springer, The Netherlands, pp. 283–295.CrossRefGoogle Scholar
  29. 29.
    Bylina, E. J., Kirmaer, C., McDowell, L., Holten, D., and Youvan, D. C. (1988) Influence of an amino acid residue on the optical properties and electron transfer dynamics of a photosynthetic reaction centre complex, Nature, 336, 182–184, DOI:  https://doi.org/10.1038/336182a0.CrossRefGoogle Scholar
  30. 30.
    Flores, M., Isaacson, R., Abresch, E., Calvo, R., Lubitz, W., and Feher, G. (2007) Protein—cofactor interactions in bacterial reaction centers from Rhodobacter sphaeroides R-26: II. Geometry of the hydrogen bonds to the primary quinone QA by 1H and 2H ENDOR spectroscopy, Biophys. J., 92, 671–682, DOI:  https://doi.org/10.1529/biophysj.106.092460.CrossRefGoogle Scholar
  31. 31.
    Steiner, T., and Koellner, G. (2001) Hydrogen bonds with π-acceptors in proteins: frequencies and role in stabilizing local 3D structure, J. Mol. Biol., 305, 535–557, DOI:  https://doi.org/10.1006/jmbi.2000.4301.CrossRefGoogle Scholar
  32. 32.
    Du, Q.-S., Wang, Q.-Y., Du, L.-Q., Chen, D., and Huang, R.-B. (2013) Theoretical study on the polar hydrogen—π (Hp-π) interactions between protein side chains, Chem. Cent. J., 7, 92–99, DOI:  https://doi.org/10.1186/1752-153X-7-92.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • A. A. Zabelin
    • 1
  • T. Yu. Fufina
    • 1
  • A. M. Khristin
    • 1
  • R. A. Khatypov
    • 1
  • V. A. Shkuropatova
    • 1
  • V. A. Shuvalov
    • 1
  • L. G. Vasilieva
    • 1
  • A. Ya. Shkuropatov
    • 1
    Email author
  1. 1.Institute of Basic Biological ProblemsRussian Academy of Sciences, Pushchino Scientific Center for Biological Research of the Russian Academy of SciencesPushchino, Moscow RegionRussia

Personalised recommendations