Advertisement

Biochemistry (Moscow)

, Volume 84, Issue 5, pp 509–519 | Cite as

Polysaccharide Galactan Inhibits Pseudomonas aeruginosa Biofilm Formation but Protects Pre-formed Biofilms from Antibiotics

  • A. V. GrishinEmail author
  • A. S. KaryaginaEmail author
Article
  • 6 Downloads

Abstract

Microorganisms residing within a biofilm become more tolerant to antibiotics and other types of adverse impact, and biofilm formation by pathogenic bacteria is an important problem of current medicine. Polysaccharides that prevent biofilm formation are among the promising candidates to help tackle this problem. Earlier we demonstrated the ability of a potato polysaccharide galactan to inhibit biofilm formation by a Pseudomonas aeruginosa clinical isolate. Here we investigate the effect of potato galactan on P. aeruginosa biofilms in more detail. Microscopic analysis indicated that the galactan did not interfere with the adhesion of bacterial cells to the substrate but prevented the build-up of bacterial biomass. Moreover, the galactan not only inhibited biofilm formation, but partially destroyed pre-formed biofilms. Presumably, this activity of the galactan was due to the excessive aggregation of bacterial cells, which prohibited the formation and maintenance of proper biofilm architecture, or due to some other mechanisms of biofilm structure remodeling. This led to an unexpected effect, i.e., P. aeruginosa biofilms treated with an antibiotic and the galactan retained more viable bacterial cells compared to biofilms treated with the antibiotic alone. Galactan is the first polysaccharide demonstrated to exert such effect on bacterial biofilms.

Keywords

biofilm galactan Pseudomonas aeruginosa polysaccharide antibiotics tolerance 

Abbreviations

CBD

Calgary biofilm device

CFU

colony-forming unit

MBC

minimum bactericidal concentration

MBEC

minimum biofilm eradication concentration

MIC

minimum inhibitory concentration

PAO1

Pseudomonas aeruginosa PAO1 laboratory strain.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The authors are thankful to Dr. I. G. Tiganova for P. aeruginosa PAO1 strain, Dr. O. Yu. Dobrynina for P. aeruginosa isolate 216, and Dr. Yu. M. Romanova for kindly providing LIVE/DEAD dyes.

Supplementary material

10541_2019_771_MOESM1_ESM.xlsx (143 kb)
Supplementary material, approximately 142 KB.

References

  1. 1.
    Hall-Stoodley, L., Costerton, J. W., and Stoodley, P. (2004) Bacterial biofilms: from the natural environment to infectious diseases, Nat. Rev. Microbiol., 2, 95–108; DOI:  https://doi.org/10.1038/nrmicro821.CrossRefGoogle Scholar
  2. 2.
    Hall-Stoodley, L., and Stoodley, P. (2009) Evolving concepts in biofilm infections, Cell Microbiol., 11, 1034–1043; DOI:  https://doi.org/10.1111/j.1462-5822.2009.01323.x.CrossRefGoogle Scholar
  3. 3.
    Hoiby, N., Bjarnsholt, T., Givskov, M., Molin, S., and Ciofu, O. (2010) Antibiotic resistance of bacterial biofilms, Int. J. Antimicrob. Agents., 35, 322–332; DOI:  https://doi.org/10.1016/j.ijan-timicag.2009.12.011.CrossRefGoogle Scholar
  4. 4.
    Jensen, P. O., Givskov, M., Bjarnsholt, T., and Moser, C. (2010) The immune system vs. Pseudomonas aeruginosa biofilms, FEMS Immunol. Med. Microbiol., 59, 292–305; DOI:  https://doi.org/10.1111/j.1574-695X.2010.00706.x.CrossRefGoogle Scholar
  5. 5.
    Mah, T.-F. (2010) Biofilm-specific antibiotic resistance, Future Microbiol., 7, 1061–1072; DOI:  https://doi.org/10.2217/fmb.12.76.CrossRefGoogle Scholar
  6. 6.
    Costerton, J. W. (1999) Bacterial biofilms: a common cause of persistent infections, Science, 284, 1318–1322; DOI:  https://doi.org/10.1126/science.284.5418.1318.CrossRefGoogle Scholar
  7. 7.
    Valle, J., Da Re, S., Henry, N., Fontaine, T., Balestrino, D., Latour-Lambert, P., and Ghigo, J.-M. (2006) Broad-spectrum biofilm inhibition by a secreted bacterial polysaccharide, Proc. Natl. Acad. Sci. USA, 103, 12558–12563; DOI:  https://doi.org/10.1073/pnas.0605399103.CrossRefGoogle Scholar
  8. 8.
    Jiang, P., Li, J., Han, F., Duan, G., Lu, X., Gu, Y, and Yu, W. (2011) Antibiofilm activity of an exopolysaccharide from marine bacterium Vibrio sp. QY101, PLoS One, 6, e18514; DOI:  https://doi.org/10.1371/journal.pone.0018514.CrossRefGoogle Scholar
  9. 9.
    Kanmani, P., Satish Kumar, R., Yuvaraj, N., Paari, K. A., Pattukumar, V., and Arul, V. (2011) Production and purification of a novel exopolysaccharide from lactic acid bacterium Streptococcus phocae PI80 and its functional characteristics activity in vitro, Bioresour. Technol., 102, 4827–4833; DOI:  https://doi.org/10.1016/j.biortech.2010.12.118.CrossRefGoogle Scholar
  10. 10.
    Sayem, S. M. A., Manzo, E., Ciavatta, L., Tramice, A., Cordone, A., Zanfardino, A., De Felice, M., and Varcamonti, M. (2011) Anti-biofilm activity of an exopolysaccharide from a sponge-associated strain of Bacillus licheniformis, Microb. Cell. Fact., 10, 74; DOI:  https://doi.org/10.1186/1475-2859-10-74.CrossRefGoogle Scholar
  11. 11.
    Spano, A., Lagana, P., Visalli, G., Maugeri, T. L., and Gugliandolo, C. (2016) In vitro antibiofilm activity of an exopolysaccharide from the marine thermophilic Bacillus licheniformis T14, Curr. Microbiol., 72, 518–528; DOI:  https://doi.org/10.1007/s00284-015-0981-9.CrossRefGoogle Scholar
  12. 12.
    Wu, S., Liu, G., Jin, W., Xiu, P., and Sun, C. (2016) Antibiofilm and anti-infection of a marine bacterial exopolysaccharide against Pseudomonas aeruginosa, Front. Microbiol., 7, 102; DOI:  https://doi.org/10.3389/fmicb.2016.00102.Google Scholar
  13. 13.
    Brian-Jaisson, F., Molmeret, M., Fahs, A., Guentas-Dombrowsky, L., Culioli, G., Blache, Y., Cerantola, S., and Ortalo-Magne, A. (2016) Characterization and anti-biofilm activity of extracellular polymeric substances produced by the marine biofilm-forming bacterium Pseudoalteromonas ulvae strain TC14, Biofouling, 32, 547–560; DOI:  https://doi.org/10.1080/08927014.2016.1164845.CrossRefGoogle Scholar
  14. 14.
    Papa, R., Parrilli, E., Sannino, F., Barbato, G., Tutino, M. L., Artini, M., and Selan, L. (2013) Anti-biofilm activity of the Antarctic marine bacterium Pseudoalteromonas haloplanktis TAC125, Res. Microbiol., 164, 450–456; DOI:  https://doi.org/10.1016/j.resmic.2013.01.010.CrossRefGoogle Scholar
  15. 15.
    Kanmani, P., Suganya, K., Satish Kumar, R., Yuvaraj, N., Pattukumar, V., Paari, K. A., and Arul, V. (2013) Synthesis and functional characterization of antibiofilm exopolysaccharide produced by Enterococcus faecium MC13 isolated from the gut of fish, Appl. Biochem. Biotechnol., 169, 1001–1015; DOI:  https://doi.org/10.1007/s12010-012-0074-1.CrossRefGoogle Scholar
  16. 16.
    Kavita, K., Singh, V. K., Mishra, A., and Jha, B. (2014) Characterization and anti-biofilm activity of extracellular polymeric substances from Oceanobacillus iheyensis, Carbohydr. Polym., 101, 29–35; DOI:  https://doi.org/10.1016/j.carbpol.2013.08.099.CrossRefGoogle Scholar
  17. 17.
    Li, Y, Li, Q., Hao, D., Jiang, D., Luo, Y., Liu, Y., and Zhao, Z. (2015) Production, purification, and antibiofilm activity of a novel exopolysaccharide from Arthrobacter sp. B4, Prep. Biochem. Biotechnol., 45, 192–204; DOI:  https://doi.org/10.1080/10826068.2014.907180.CrossRefGoogle Scholar
  18. 18.
    Pradeepa, Shetty, A. D., Matthews, K., Hegde, A. R., Akshatha, B., Mathias, A. B., Mutalik, S., and Vidya, S. M. (2016) Multidrug resistant pathogenic bacterial biofilm inhibition by Lactobacillus plantarum exopolysaccharide, Bioact. Carbohydr. Diet Fibre, 8, 7–14; DOI:  https://doi.org/10.1016/j.bcdf.2016.06.002.CrossRefGoogle Scholar
  19. 19.
    Rendueles, O., Travier, L., and Latour-Lambert, P. (2011) Screening of Escherichia coli species biodiversity reveals new biofilm-associated antiadhesion polysaccharide, MBio, 2, e00043–11; DOI:  https://doi.org/10.1128/mBio.00043-11.CrossRefGoogle Scholar
  20. 20.
    Bendaoud, M., Vinogradov, E., Balashova, N. V., Kadouri, D. E., Kachlany, S. C., and Kaplan, J. B. (2011) Broad-spectrum biofilm inhibition by Kingella kingae exopolysaccharide, J. Bacteriol., 193, 3879–3886; DOI:  https://doi.org/10.1128/JB.00311-11.CrossRefGoogle Scholar
  21. 21.
    Dos Santos Goncalves, M., Delattre, C., Balestrino, D., Charbonnel, N., Elboutachfaiti, R., Wadouachi, A., Badel, S., Bernardi, T., Michaud, P., and Forestier, C. (2014) Anti-biofilm activity: a function of Klebsiella pneumoniae capsular polysaccharide, PLoS One, 9, e99995; DOI:  https://doi.org/10.1371/journal.pone.0099995.CrossRefGoogle Scholar
  22. 22.
    Grishin, A., Karyagina, A. S., Tiganova, I. G., Dobrynina, O. Y., Bolshakova, T. N., Boksha, I. S., Alexeyeva, N. V., Stepanova, T. V., Lunin, V. G., Chuchalin, A. G., and Ginzburg, A. L. (2013) Inhibition of Pseudomonas aeruginosa biofilm formation by LecA-binding polysaccharides, Int. J. Antimicrob. Agents, 42, 471–472; DOI:  https://doi.org/10.1016/j.ijantimicag.2013.07.003.CrossRefGoogle Scholar
  23. 23.
    Vazquez-Rodriguez, A., Vasto-Anzaldo, X. G., Barboza Perez, D., Vázquez-Garza, E., Chapoy-Villanueva, H., Garcia-Rivas, G., Garza-Cervantes, J., Gomez-Lugo, J. J., Gomez-Loredo, A. E., Gonzalez, M. T. G., Zarate, X., and Morones-Ramirez, J. R. (2018) Microbial competition of Rhodotorula mucilaginosa UANL-001L and E. coli increase biosynthesis of non-toxic exopolysaccharide with applications as a wide-spectrum antimicrobial, Sci. Rep., 8, 798; DOI:  https://doi.org/10.1038/s41598-017-17908-8.CrossRefGoogle Scholar
  24. 24.
    Doghri, I., Lavaud, J., Dufour, A., Bazire, A., Lanneluc, I., and Sable, S. (2017) Cell-bound exopolysaccharides from an axenic culture of the intertidal mudflat Navicula phyllepta diatom affect biofilm formation by benthic bacteria, J. Appl. Phycol., 29, 165–177; DOI:  https://doi.org/10.1007/s10811-016-0943-z.CrossRefGoogle Scholar
  25. 25.
    Bernal, P., and Llamas, M. A. (2012) Promising biotechnological applications of antibiofilm exopolysaccharides, Microb. Biotechnol., 5, 670–673; DOI:  https://doi.org/10.1111/j.1751-7915.2012.00359.x.CrossRefGoogle Scholar
  26. 26.
    Rendueles, O., Kaplan, J. B., and Ghigo, J.-M. (2013) Antibiofilm polysaccharides, Environ. Microbiol., 15, 334–346; DOI:  https://doi.org/10.1111/j.1462-2920.2012.02810.x.CrossRefGoogle Scholar
  27. 27.
    Kim, Y., Oh, S., and Kim, S. H. (2009) Released exopolysaccharide (r-EPS) produced from probiotic bacteria reduce biofilm formation of enterohemorrhagic Escherichia coli O157:H7, Biochem. Biophys. Res. Commun., 379, 324–329; DOI:  https://doi.org/10.1016/j.bbrc.2008.12.053.CrossRefGoogle Scholar
  28. 28.
    Karwacki, M. T., Kadouri, D. E., Bendaoud, M., Izano, E. A., Sampathkumar, V., Inzana, T. J., and Kaplan, J. B. (2013) Antibiofilm activity of Actinobacillus pleuropneumoniae serotype 5 capsular polysaccharide, PLoS One, 8, e63844; DOI:  https://doi.org/10.1371/journal.pone.0063844.CrossRefGoogle Scholar
  29. 29.
    O’Toole, G. A. (2011) Microtiter dish biofilm formation assay, J. Vis. Exp., 47, 2437; DOI:  https://doi.org/10.3791/2437.Google Scholar
  30. 30.
    Mah, T.-F. (2014) Establishing the minimal bactericidal concentration of an antimicrobial agent for planktonic cells (MBC-P) and biofilm cells (MBC-B), J. Vis. Exp., 83, e50854; DOI:  https://doi.org/10.3791/50854.Google Scholar
  31. 31.
    Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., Preibisch, S., Rueden, C., Saalfeld, S., Schmid, B., Tinevez, J.-Y., White, D. J., Hartenstein, V., Eliceiri, K., Tomancak, P., and Cardona, A. (2012) Fiji: an open-source platform for biological-image analysis, Nat. Meth., 9, 676–682; DOI:  https://doi.org/10.1038/nmeth.2019.CrossRefGoogle Scholar
  32. 32.
    Hiramatsu, Y., Saito, M., Otsuka, N., Suzuki, E., Watanabe, M., Shibayama, K., and Kamachi, K. (2016) BipA is associated with preventing autoagglutination and promoting biofilm formation in Bordetella holmesii, PLoS One, 11, e0159999; DOI:  https://doi.org/10.1371/journal.pone.0159999.CrossRefGoogle Scholar
  33. 33.
    Imberty, A., Wimmerova, M., Mitchell, E. P., and Gilboa-Garber, N. (2004) Structures of the lectins from Pseudomonas aeruginosa: insights into the molecular basis for host glycan recognition, Microbes Infect., 6, 221–228; DOI:  https://doi.org/10.1016/j.micinf.2003.10.016.CrossRefGoogle Scholar
  34. 34.
    Grishin, A. V., Krivozubov, M. S., Karyagina, A. S., and Gintsburg, A. L. (2015) Pseudomonas aeruginosa lectins as targets for novel antibacterials, Acta Naturae, 7, 29–41.Google Scholar
  35. 35.
    Titz, A. (2014) Carbohydrate-based anti-virulence compounds against chronic Pseudomonas aeruginosa infections with a focus on small molecules, in Carbohydrates as Drugs. Topics in Medicinal Chemistry, Vol. 12 (Seeberger, P., and Rademacher, C., eds.) Springer, Cambridge, pp. 169–186; DOI:  https://doi.org/10.1007/7355_2014_44.Google Scholar
  36. 36.
    Boukerb, A. M., Rousset, A., Galanos, N., Mear, J.-B., Thepaut, M., Grandjean, T., Gillon, E., Cecioni, S., Abderrahmen, C., Faure, K., Redelberger, D., Kipnis, E., Dessein, R., Havet, S., Darblade, B., Matthews, S. E., de Bentzmann, S., Guery, B., Cournoyer, B., Imberty, A., and Vidal, S. (2014) Antiadhesive properties of glycoclusters against Pseudomonas aeruginosa lung infection, J. Med. Chem., 57, 10275–10289; DOI:  https://doi.org/10.1021/jm500038p.CrossRefGoogle Scholar
  37. 37.
    Beaudoin, T., Yau, Y. C. W., Stapleton, P. J., Gong, Y., Wang, P. W., Guttman, D. S., and Water, V. (2017) Staphylococcus aureus interaction with Pseudomonas aeruginosa biofilm enhances tobramycin resistance, NPJ Biofilms Microbiomes, 3, 25; DOI:  https://doi.org/10.1038/s41522-017-0035-0.CrossRefGoogle Scholar
  38. 38.
    Armbruster, C. R., Wolter, D. J., Mishra, M., Hayden, H. S., Radey, M. C., Merrihew, G., Maccoss, M. J., Burns, J., Wozniak, D. J., Parsek, M. R., and Hoffman, L. R. (2016) Staphylococcus aureus protein A mediates interspecies interactions at the cell surface of Pseudomonas aeruginosa, MBio, 7, e00538–16; DOI:  https://doi.org/10.1128/mBio.00538-16.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.N. F. Gamaleya National Research Center of Epidemiology and MicrobiologyMinistry of Health of the Russian FederationMoscowRussia
  2. 2.All-Russia Research Institute of Agricultural BiotechnologyMoscowRussia
  3. 3.A. N. Belozersky Institute of Physico-Chemical BiologyLomonosov Moscow State UniversityMoscowRussia

Personalised recommendations