Advertisement

Biochemistry (Moscow)

, Volume 84, Issue 3, pp 321–328 | Cite as

“Necessity Is the Mother of Invention” or Inexpensive, Reliable, and Reproducible Protocol for Generating Organoids

  • A. V. EremeevEmail author
  • E. A. Volovikov
  • L. D. Shuvalova
  • A. V. Davidenko
  • E. A. Khomyakova
  • M. E. Bogomiakova
  • O. S. Lebedeva
  • O. A. Zubkova
  • M. A. LagarkovaEmail author
Article
  • 17 Downloads

Abstract

Organoids are three-dimensional (3D) cell cultures that replicate some of the key features of morphology, spatial architecture, and functions of a particular organ. Organoids can be generated from both adult and pluripotent stem cells (PSCs), and complex organoids can also be obtained by combining different types of cells, including differentiated cells. The ability of pluripotent cells to self-organize into organotypic structures containing several cell subtypes specific for a particular organ was used for creating organoids of the brain, eye, kidney, intestine, and other organs. Despite the advantages of using PSCs for obtaining organoids, an essential shortcoming that prevents their widespread use has been a low yield when they are obtained from a PSC monolayer culture and a large variation in size. This leads to great heterogeneity on further differentiation. In this article, we describe our own protocol for generating standardized organoids, with emphasis on a method for generating brain organoids, which allows scaling-up experiments and makes their cultivation less expensive and easier.

Keywords

differentiation cell culture embryonic stem cells induced pluripotent stem cells organoids bioreactor 

Abbreviations

bFGF

basic fibroblast growth factor

DAPI

4′,6-diamidino-2-phenylindole dihydrochloride

DMEM

Dulbecco’s Modified Eagle’s Medium

FBS

fetal bovine serum

(i)PSC

(induced) pluripotent stem cells

PBS

phosphate buffered saline

SR

serum replacement

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lancaster, M. A., Renner, M., Martin, C. A., Wenzel, D., Bicknell, L. S., Hurles, M. E., Homfray, T., Penninger, J. M., Jackson, A. P., and Knoblich, J. A. (2013) Cerebral organoids model human brain development and micro–cephaly, Nature, 501, 373–379.CrossRefGoogle Scholar
  2. 2.
    Lancaster, M. A., and Knoblich, J. A. (2014) Organogenesis in a dish: modeling development and disease using organoid technologies, Science, 345, 124–125.CrossRefGoogle Scholar
  3. 3.
    Pasca, A. M., Sloan, S. A., Clarke, L. E., Tian, Y., Makinson, C. D., Huber, N., Kim, C. H., Park, J. Y., O’Rourke, N. A., Nguyen, K. D., Smith, S. J., Huguenard, J. R., Geschwind, D. H., Barres, B. A., and Pasca, S. P. (2015) Functional cortical neurons and astrocytes from human pluripotent stem cells in 3D culture, Nat. Methods, 12, 671–678.CrossRefPubMedCentralGoogle Scholar
  4. 4.
    Kadoshima, T., Sakaguchi, H., Nakano, T., Soen, M., Ando, S., Eiraku, M., and Sasai, Y. (2013) Self–organiza–tion of axial polarity, inside–out layer pattern, and species–specific progenitor dynamics in human ES cell–derived neocortex, Proc. Natl. Acad. Sci. USA, 110, 20284–20289.CrossRefGoogle Scholar
  5. 5.
    Renner, M., Lancaster, M. A., Bian, S., Choi, H., Ku, T., Peer, A., Chung, K., and Knoblich, J. A. (2017) Self–organized developmental patterning and differentiation in cerebral organoids, EMBO J., 36, 1316–1329.CrossRefPubMedCentralGoogle Scholar
  6. 6.
    Sato, T., Vries, R. G., Snippert, H. J., Wetering, M., Barker, N., Stange, D. E., Es, J. H., Abo, A., Kujala, P., Peters, P. J., and Clevers, H. (2009) Single Lgr5 stem cells build crypt–villus structures in vitro without a mesenchymal niche, Nature, 459, 262–265.CrossRefGoogle Scholar
  7. 7.
    Wells, J. M., and Spence, J. R. (2014) How to make an intestine, Development, 141, 752–760.CrossRefPubMedCentralGoogle Scholar
  8. 8.
    Spence, J. R., Mayhew, C. N., Rankin, S. A., Kuhar, M. F., Vallance, J. E., Tolle, K., Hoskins, E. E., Kalinichenko, V. V., Wells, S. I., Zorn, A. M., Shroyer, N. F., and Wells, J. M. (2011) Directed differentiation of human pluripotent stem cells into intestinal tissue in vitro, Nature, 470, 105–109.CrossRefGoogle Scholar
  9. 9.
    Takasato, M., Er, P. X., Chiu, H. S., Maier, B., Baillie, G. J., Ferguson, C., Parton, R. G., Wolvetang, E. J., Roost, M. S., Chuva de Sousa Lopes, S. M., and Little, M. H. (2015) Kidney organoids from human iPS cells contain multiple lineages and model human nephrogenesis, Nature, 526, 564–568.CrossRefGoogle Scholar
  10. 10.
    Takasato, M., Er, P. X., Becroft, M., Vanslambrouck, J. M., Stanley, E. G., Elefanty, A. G., and Little, M. H. (2014) Directing human embryonic stem cell differentiation towards a renal lineage generates a self–organizing kidney, Nat. Cell Biol., 16, 118–126.CrossRefGoogle Scholar
  11. 11.
    Nakano, T., Ando, S., Takata, N., Kawada, M., Muguruma, K., Sekiguchi, K., Saito, K., Yonemura, S., Eiraku, M., and Sasai, Y. (2012) Self–formation of optic cups and storable stratified neural retina from human ESCs, Cell Stem Cell, 10, 771–785.CrossRefGoogle Scholar
  12. 12.
    Eiraku, M., Takata, N., Ishibashi, H., Kawada, M., Sakakura, E., Okuda, S., Sekiguchi, K., Adachi, T., and Sasai, Y. (2011) Self–organizing optic–cup morphogenesis in three–dimensional culture, Nature, 472, 51–56.CrossRefGoogle Scholar
  13. 13.
    Quadrato, G., Nguyen, T., Macosko, E. Z., Sherwood, J. L., Min Yang, S., Berger, D. R., Maria, N., Scholvin, J., Goldman, M., Kinney, J. P., Boyden, E. S., Lichtman, J. W., Williams, Z. M., McCarroll, S. A., and Arlotta, P. (2017) Cell diversity and network dynamics in photosensi–tive human brain organoids, Nature, 545, 48–53.CrossRefPubMedCentralGoogle Scholar
  14. 14.
    Huch, M., Gehart, H., van Boxtel, R., Hamer, K., Blokzijl, F., Verstegen, M. M., Ellis, E., van Wenum, M., Fuchs, S. A., de Ligt, J., van de Wetering, M., Sasaki, N., Boers, S. J., Kemperman, H., de Jonge, J., Ijzermans, J. N., Nieuwenhuis, E. E., Hoekstra, R., Strom, S., Vries, R. R., van der Laan, L. J., Cuppen, E., and Clevers, H. (2015) Long–term culture of genome–stable bipotent stem cells from adult human liver, Cell, 160, 299–312.CrossRefPubMedCentralGoogle Scholar
  15. 15.
    Takebe, T., Sekine, K., Enomura, M., Koike, H., Kimura, M., Ogaeri, T., Zhang, R. R., Ueno, Y., Zheng, Y. W., Koike, N., Aoyama, S., Adachi, Y., and Taniguchi, H. (2013) Vascularized and functional human liver from an iPSC–derived organ bud transplant, Nature, 499, 481–484.CrossRefGoogle Scholar
  16. 16.
    Giandomenico, S. L., and Lancaster, M. A. (2017) Probing human brain evolution and development in organoids, Curr. Opin. Cell Biol., 44, 36–43.CrossRefGoogle Scholar
  17. 17.
    Conforti, P., Besusso, D., Bocchi, V. D., Faedo, A., Cesana, E., Rossetti, G., Ranzani, V., Svendsen, C. N., Thompson, L. M., Toselli, M., Biella, G., Pagani, M., and Cattaneo, E. (2018) Faulty neuronal determination and cell polarization are reverted by modulating HD early pheno–types, Proc. Natl. Acad. Sci. USA, 115, E762–E771.Google Scholar
  18. 18.
    Lebedeva, O. S., and Lagarkova, M. A. (2018) Pluripotent stem cells for modelling and cell therapy of Parkinson’s dis–ease, Biochemistry (Moscow), 83, 1046–1056.CrossRefGoogle Scholar
  19. 19.
    Clevers, H. (2016) Modeling development and disease with organoids, Cell, 165, 1586–1597.CrossRefGoogle Scholar
  20. 20.
    Dang, J., Tiwari, S. K., Lichinchi, G., Qin, Y., Patil, V. S., Eroshkin, A. M., and Rana, T. M. (2016) Zika virus depletes neural progenitors in human cerebral organoids through activation of the innate immune receptor TLR3, Cell Stem Cell, 19, 258–265.CrossRefPubMedCentralGoogle Scholar
  21. 21.
    Chen, K. G., Mallon, B. S., Park, K., Robey, P. G., McKay, R. D. G., Gottesman, M. M., and Zheng, W. (2018) Pluripotent stem cell platforms for drug discovery, Trends Mol. Med., 24, 805–820.CrossRefGoogle Scholar
  22. 22.
    Qian, X., Nguyen, H. N., Jacob, F., Song, H., and Ming, G. L. (2017) Using brain organoids to understand Zika virus–induced microcephaly, Development, 144, 952–957.CrossRefPubMedCentralGoogle Scholar
  23. 23.
    Kelava, I., and Lancaster, M. A. (2016) Stem cell models of human brain development, Cell Stem Cell, 18, 736–748.CrossRefGoogle Scholar
  24. 24.
    Di Lullo, E., and Kriegstein, A. R. (2017) The use of brain organoids to investigate neural development and disease, Nat. Rev. Neurosci., 18, 573–584.CrossRefPubMedCentralGoogle Scholar
  25. 25.
    Camp, J. G., Badsha, F., Florio, M., Kanton, S., Gerber, T., Wilsch–Brauninger, M., Lewitus, E., Sykes, A., Hevers, W., Lancaster, M., Knoblich, J. A., Lachmann, R., Paabo, S., Huttner, W. B., and Treutlein, B. (2015) Human cere–bral organoids recapitulate gene expression programs of fetal neocortex development, Proc. Natl. Acad. Sci. USA, 112, 15672–15677.CrossRefGoogle Scholar
  26. 26.
    Xiang, Y., Tanaka, Y., Patterson, B., Kang, Y. J., Govindaiah, G., Roselaar, N., Cakir, B., Kim, K. Y., Lombroso, A. P., Hwang, S. M., Zhong, M., Stanley, E. G., Elefanty, A. G., Naegele, J. R., Lee, S. H., Weissman, S. M., and Park, I. H. (2017) Fusion of regionally specified hPSC–derived organoids models human brain development and interneuron migration, Cell Stem Cell, 21, 383–398.CrossRefPubMedCentralGoogle Scholar
  27. 27.
    Muguruma, K., Nishiyama, A., Kawakami, H., Hashimoto, K., and Sasai, Y. (2015) Self–organization of polarized cerebellar tissue in 3D culture of human pluripo–tent stem cells, Cell Rep., 10, 537–550.CrossRefGoogle Scholar
  28. 28.
    Jo, J., Xiao, Y., Sun, A. X., Cukuroglu, E., Tran, H. D., Goke, J., Tan, Z. Y., Saw, T. Y., Tan, C. P., Lokman, H., Lee, Y., Kim, D., Ko, H. S., Kim, S. O., Park, J. H., Cho, N. J., Hyde, T. M., Kleinman, J. E., Shin, J. H., Weinberger, D. R., Tan, E. K., Je, H. S., and Ng, H. H. (2016) Midbrain–like organoids from human pluripotent stem cells contain functional dopaminergic and neurome–lanin–producing neurons, Cell Stem Cell, 19, 248–257.CrossRefPubMedCentralGoogle Scholar
  29. 29.
    Qian, X., Nguyen, H. N., Song, M. M., Hadiono, C., Ogden, S. C., Hammack, C., Yao, B., Hamersky, G. R., Jacob, F., Zhong, C., Yoon, K. J., Jeang, W., Lin, L., Li, Y., Thakor, J., Berg, D. A., Zhang, C., Kang, E., Chickering, M., Nauen, D., Ho, C. Y., Wen, Z., Christian, K. M., Shi, P. Y., Maher, B. J., Wu, H., Jin, P., Tang, H., Song, H., and Ming, G. L. (2016) Brain–region–specific organoids using mini–bioreactors for modeling ZIKV exposure, Cell, 165, 1238–1254.CrossRefPubMedCentralGoogle Scholar
  30. 30.
    Qian, X., Jacob, F., Song, M. M., Nguyen, H. N., Song, H., and Ming, G. L. (2018) Generation of human brain region–specific organoids using a miniaturized spinning bioreactor, Nat. Protoc., 13, 565–580.CrossRefPubMedCentralGoogle Scholar
  31. 31.
    Sakaguchi, H., Kadoshima, T., Soen, M., Narii, N., Ishida, Y., Ohgushi, M., Takahashi, J., Eiraku, M., and Sasai, Y. (2015) Generation of functional hippocampal neurons from self–organizing human embryonic stem cell–derived dorsomedial telencephalic tissue, Nat. Commun., 6, 8896.CrossRefPubMedCentralGoogle Scholar
  32. 32.
    Nasr, B., Chatterton, R., Yong, J. H. M., Jamshidi, P., D’Abaco, G. M., Bjorksten, A. R., Kavehei, O., Chana, G., Dottori, M., and Skafidas, E. (2018) Self–organized nanostructure modified microelectrode for sensitive elec–trochemical glutamate detection in stem cells–derived brain organoids, Biosensors (Basel), 8, E14.Google Scholar
  33. 33.
    Yakoub, A. M., and Sadek, M. (2018) Development and characterization of human cerebral organoids: an opti–mized protocol, Cell Transplant., 27, 393–406.CrossRefPubMedCentralGoogle Scholar
  34. 34.
    Krefft, O., Jabali, A., Iefremova, V., Koch, P., and Ladewig, J. (2018) Generation of standardized and repro–ducible forebrain–type cerebral organoids from human induced pluripotent stem cells, J. Vis. Exp., 131, 56768–56776.Google Scholar
  35. 35.
    Zweigerdt, R., Olmer, R., Singh, H., Haverich, A., and Martin, U. (2011) Scalable expansion of human pluripo–tent stem cells in suspension culture, Nat. Protoc., 6, 689–700.CrossRefGoogle Scholar
  36. 36.
    Eldred, M. K., Charlton–Perkins, M., Muresan, L., and Harris, W. A. (2017) Self–organizing aggregates of zebrafish retinal cells for investigating mechanisms of neural lamina–tion, Development, 144, 1097–1106.CrossRefPubMedCentralGoogle Scholar
  37. 37.
    Raja, W. K., Mungenast, A. E., Lin, Y. T., Ko, T., Abdurrob, F., Seo, J., and Tsai, L. H. (2016) Self–organiz–ing 3D human neural tissue derived from induced pluripo–tent stem cells recapitulate Alzheimer’s disease pheno–types, PLoS One, 11, e0161969.Google Scholar
  38. 38.
    Eiraku, M., and Sasai, Y. (2012) Self–formation of layered neural structures in three–dimensional culture of ES cells, Curr. Opin. Neurobiol., 22, 768–777.CrossRefGoogle Scholar
  39. 39.
    Belair, D. G., Wolf, C. J., Moorefield, S. D., Wood, C., Becker, C., and Abbott, B. D. (2018) A three–dimensional organoid culture model to assess the influence of chemicals on morphogenetic fusion, Toxicol. Sci., 166, 394–408.Google Scholar
  40. 40.
    Liu, S., Xie, B., Song, X., Zheng, D., He, L., Li, G., Gao, G., Peng, F., Yu, M., Ge, J., and Zhong, X. (2018) Self–formation of RPE spheroids facilitates enrichment and expansion of hiPSC–derived RPE generated on retinal organoid induction platform, Invest. Ophthalmol. Vis. Sci., 59, 5659–5669.CrossRefGoogle Scholar
  41. 41.
    Linxweiler, J., Hammer, M., Muhs, S., Kohn, M., Pryalukhin, A., Veith, C., Bohle, R. M., Stockle, M., Junker, K., and Saar, M. (2018) Patient–derived, three–dimensional spheroid cultures provide a versatile transla–tional model for the study of organ–confined prostate can–cer, J. Cancer Res. Clin. Oncol., doi: 10.1007/s00432–018–2803–5.Google Scholar
  42. 42.
    Flint, J. J., Menon, K., Hansen, B., Forder, J., and Blackband, S. J. (2015) A microperfusion and in–bore oxy–genator system designed for magnetic resonance microscopy studies on living tissue explants, Sci. Rep., 5, 18095.CrossRefPubMedCentralGoogle Scholar
  43. 43.
    Salek, M. M., Sattari, P., and Martinuzzi, R. J. (2012) Analysis of fluid flow and wall shear stress patterns inside partially filled agitated culture well plates, Ann. Biomed. Eng., 40, 707–728.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • A. V. Eremeev
    • 1
    Email author
  • E. A. Volovikov
    • 1
  • L. D. Shuvalova
    • 1
  • A. V. Davidenko
    • 1
  • E. A. Khomyakova
    • 1
  • M. E. Bogomiakova
    • 1
  • O. S. Lebedeva
    • 1
  • O. A. Zubkova
    • 1
  • M. A. Lagarkova
    • 1
    Email author
  1. 1.Federal Research and Clinical Center of Physical-Chemical Medicine (FRCC PCM)Federal Medical Biological Agency of Russia (FMBA)MoscowRussia

Personalised recommendations