Biochemistry (Moscow)

, Volume 84, Issue 3, pp 299–309 | Cite as

A Platform for Studying Neurodegeneration Mechanisms Using Genetically Encoded Biosensors

  • E. I. Ustyantseva
  • S. P. Medvedev
  • A. S. Vetchinova
  • J. M. Minina
  • S. N. Illarioshkin
  • S. M. ZakianEmail author


Patient-specific induced pluripotent stem cells (iPSCs) capable of differentiation into required cell type are a promising model for studying various pathological processes and development of new therapeutic approaches. However, no conventional strategies for using iPSCs in disease research have been established yet. Genetically encoded biosensors can be used for monitoring messenger molecules, metabolites, and enzyme activity in real time with the following conversion of the registered signals in quantitative data, thus allowing evaluation of the impact of certain molecules on pathology development. In this article, we describe the development of a universal cell-based platform for studying pathological processes associated with amyotrophic lateral sclerosis. For this purpose, we have created a series of plasmid constructs for monitoring endoplasmic reticulum stress, oxidative stress, apoptosis, and Ca2+-dependent hyperexcitability and generated transgenic iPSC line carrying mutation in the superoxide dismutase 1 gene (SOD1) and healthy control cell line. Both cell lines have specific transactivator sequence required for doxycycline-controlled transcriptional activation and can be used for a single-step biosensor insertion.


induced pluripotent stem cells biosensors CRISPR/Cas9 



amyotrophic lateral sclerosis


clustered regularly interspaced short palindromic repeats/CRISPR-associated


embryonic body


endoplasmic reticulum


induced pluripotent stem cells


mononuclear blood cells


phosphate buffered saline


superoxide dismutase 1


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Takahashi, K., and Yamanaka, S. (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors, Cell, 126, 663–676.CrossRefGoogle Scholar
  2. 2.
    Yu, J., Vodyanik, M. A., Smuga–Otto, K., Antosiewicz–Bourget, J., Frane, J. L., Tian, S., Nie, J., Jonsdottir, G. A., Ruotti, V., Stewart, R., Slukvin, I. I., and Thomson, J. A. (2007) Induced pluripotent stem cell lines derived from human somatic cells, Science, 318, 1917–1920.CrossRefGoogle Scholar
  3. 3.
    Wiethoff, S., Arber, C., Li, A., Wray, S., Houlden, H., and Patani, R. (2015) Using human induced pluripotent stem cells to model cerebellar disease: hope and hype, J. Neurogenet., 29, 95–102.CrossRefPubMedCentralGoogle Scholar
  4. 4.
    Ghaffari, L. T., Starr, A., Nelson, A. T., and Sattler, R. (2018) Representing diversity in the dish: using patient–derived in vitro models to recreate the heterogeneity of neu–rological disease, Front. Neurosci., 12, 1–18.CrossRefGoogle Scholar
  5. 5.
    Israel, M. A., Yuan, S. H., Bardy, C., Reyna, S. M., Mu, Y., Herrera, C., Hefferan, M. P., Van Gorp, S., Nazor, K. L., Boscolo, F. S., Carson, C. T., Laurent, L. C., Marsala, M., Gage, F. H., Remes, A. M., Koo, E. H., and Goldstein, L. S. B. (2012) Probing sporadic and familial Alzheimer’s dis–ease using induced pluripotent stem cells, Nature, 482, 216–220.CrossRefPubMedCentralGoogle Scholar
  6. 6.
    Zou, J., Mali, P., Huang, X., Dowey, S. N., and Cheng, L. (2011) Site–specific gene correction of a point mutation in human iPS cells derived from an adult patient with sickle cell disease, Blood, 118, 4599–4608.CrossRefPubMedCentralGoogle Scholar
  7. 7.
    Ananiev, G., Williams, E. C., Li, H., and Chang, Q. (2011) Isogenic pairs of wild type and mutant induced pluripotent stem cell (iPSC) lines from Rett syndrome patients as in vitro disease model, PLoS One, 6, e25255.CrossRefGoogle Scholar
  8. 8.
    Dimos, J. T., Rodolfa, K. T., Niakan, K. K., Weisenthal, L. M., Mitsumoto, H., Chung, W., Croft, G. F., Saphier, G., Leibel, R., Goland, R., Wichterle, H., Henderson, C. E., and Eggan, K. (2008) Induced pluripotent stem cells gen–erated from patients with ALS can be differentiated into motor neurons, Science, 321, 1218–1221.CrossRefGoogle Scholar
  9. 9.
    Alves, C. J., Dariolli, R., Jorge, F. M., Monteiro, M. R., Maximino, J. R., Martins, R. S., Strauss, B. E., Krieger, J. E., Callegaro, D., and Chadi, G. (2015) Gene expression profiling for human iPS–derived motor neurons from spo–radic ALS patients reveals a strong association between mitochondrial functions and neurodegeneration, Front. Cell. Neurosci., 9, 289.PubMedCentralGoogle Scholar
  10. 10.
    Wijesekera, L. C., and Leigh, P. N. (2009) Amyotrophic lateral sclerosis, Orphanet J. Rare Dis., 4, 3.CrossRefPubMedCentralGoogle Scholar
  11. 11.
    Brites, D., and Vaz, A. R. (2014) Microglia centered patho–genesis in ALS: insights in cell interconnectivity, Front. Cell. Neurosci., 8, 117.CrossRefPubMedCentralGoogle Scholar
  12. 12.
    Celeste, D. B., and Miller, M. S. (2018) Reviewing the evi–dence for viruses as environmental risk factors for ALS: a new perspective, Cytokine, 108, 173–178.CrossRefGoogle Scholar
  13. 13.
    Oskarsson, B., Horton, D. K., and Mitsumoto, H. (2015) Potential environmental factors in amyotrophic lateral sclerosis, Neurol. Clin., 33, 877–888.CrossRefPubMedCentralGoogle Scholar
  14. 14.
    Ajroud–Driss, S., and Siddique, T. (2014) Sporadic and hereditary amyotrophic lateral sclerosis (ALS), Biochim. Biophys. Acta, 1852, 679–684.CrossRefGoogle Scholar
  15. 15.
    Abel, O., Powell, J. F., Andersen, P. M., and Al–Chalabi, A. (2012) ALSoD: a user–friendly online bioinformatics tool for amyotrophic lateral sclerosis genetics, Hum. Mutat., 33, 1345–1351.CrossRefGoogle Scholar
  16. 16.
    Doi, H., Koyano, S., Suzuki, Y., Nukina, N., and Kuroiwa, Y. (2010) The RNA–binding protein FUS/TLS is a com–mon aggregate–interacting protein in polyglutamine dis–eases, Neurosci. Res., 66, 131–133.CrossRefGoogle Scholar
  17. 17.
    Cortese, A., Plagnol, V., Brady, S., Simone, R., Lashley, T., Acevedo–Arozena, A., de Silva, R., Greensmith, L., Holton, J., Hanna, M. G., Fisher, E. M. C., and Fratta, P. (2014) Widespread RNA metabolism impairment in spo–radic inclusion body myositis TDP43–proteinopathy, Neurobiol. Aging, 35, 1491–1498.CrossRefPubMedCentralGoogle Scholar
  18. 18.
    Watson, M. R., Lagow, R. D., Xu, K., Zhang, B., and Bonini, N. M. (2008) A drosophila model for amyotrophic lateral sclerosis reveals motor neuron damage by human SOD1, J. Biol. Chem., 283, 24972–24981.CrossRefPubMedCentralGoogle Scholar
  19. 19.
    Sakowski, S. A., Lunn, J., Busta, A. S., Oh, S., Zamora–Berridi, G., Palmer, M., Rosenberg, A. A., Philip, S. G., Dowling, J. J., and Feldman, E. L. (2012) Neuromuscular effects of G93A–SOD1 expression in zebrafish, Mol. Neurodegener., 7, 44.CrossRefPubMedCentralGoogle Scholar
  20. 20.
    Allen, S. P., Rajan, S., Duffy, L., Mortiboys, H., Higginbottom, A., Grierson, A. J., and Shaw, P. J. (2014) Superoxide dismutase 1 mutation in a cellular model of amyotrophic lateral sclerosis shifts energy generation from oxidative phosphorylation to glycolysis, Neurobiol. Aging, 35, 1499–1509.CrossRefGoogle Scholar
  21. 21.
    Richardson, K., Allen, S. P., Mortiboys, H., Grierson, A. J., Wharton, S. B., Ince, P. G., Shaw, P. J., and Heath, P. R. (2013) The effect of SOD1 mutation on cellular bioener–getic profile and viability in response to oxidative stress and influence of mutation–type, PLoS One, 8, e68256.Google Scholar
  22. 22.
    Gutscher, M., Pauleau, A.–L., Marty, L., Brach, T., Wabnitz, G. H., Samstag, Y., Meyer, A. J., and Dick, T. P. (2008) Real–time imaging of the intracellular glutathione redox potential, Nat. Methods, 5, 553–559.CrossRefGoogle Scholar
  23. 23.
    Iwawaki, T., Akai, R., Kohno, K., and Miura, M. (2004) A transgenic mouse model for monitoring endoplasmic retic–ulum stress, Nat. Med., 10, 98–102.CrossRefGoogle Scholar
  24. 24.
    Schwarzlander, M., Dick, T. P., Meyer, A. J., and Morgan, B. (2016) Dissecting redox biology using fluorescent pro–tein sensors, Antioxid. Redox Signal., 24, 680–712.CrossRefGoogle Scholar
  25. 25.
    Esposito, S., Masala, A., Sanna, S., Rassu, M., Pimxayvong, V., Iaccarino, C., and Crosio, C. (2017) Redox–sensitive GFP to monitor oxidative stress in neu–rodegenerative diseases, Rev. Neurosci., 28, 133–144.CrossRefGoogle Scholar
  26. 26.
    Morgan, B., Sobotta, M. C., and Dick, T. P. (2011) Measuring E(GSH) and H2O2 with roGFP2–based redox probes, Free Radic. Biol. Med., 51, 1943–1951.CrossRefGoogle Scholar
  27. 27.
    Kaser, A., Lee, A.–H., Franke, A., Glickman, J. N., Zeissig, S., Tilg, H., Nieuwenhuis, E. E. S., Higgins, D. E., Schreiber, S., Glimcher, L. H., and Blumberg, R. S. (2008) XBP1 links ER stress to intestinal inflammation and con–fers genetic risk for human inflammatory bowel disease, Cell, 134, 743–756.CrossRefPubMedCentralGoogle Scholar
  28. 28.
    Nishitoh, H., Kadowaki, H., Nagai, A., Maruyama, T., Yokota, T., Fukutomi, H., Noguchi, T., Matsuzawa, A., Takeda, K., and Ichijo, H. (2008) ALS–linked mutant SOD1 induces ER stress–and ASK1–dependent motor neuron death by targeting Derlin–1, Genes Dev., 22, 1451–1464.CrossRefPubMedCentralGoogle Scholar
  29. 29.
    Chen, T.–W., Wardill, T. J., Sun, Y., Pulver, S. R., Renninger, S. L., Baohan, A., Schreiter, E. R., Kerr, R. A., Orger, M. B., Jayaraman, V., Looger, L. L., Svoboda, K., and Kim, D. S. (2013) Ultrasensitive fluorescent proteins for imaging neuronal activity, Nature, 499, 295–300.CrossRefPubMedCentralGoogle Scholar
  30. 30.
    Ran, F. A., Hsu, P. D., Wright, J., Agarwala, V., Scott, D. A., and Zhang, F. (2013) Genome engineering using the CRISPR–Cas9 system, Nat. Protoc., 8, 2281–2308.CrossRefPubMedCentralGoogle Scholar
  31. 31.
    Soares, F. A. C., Pedersen, R. A., and Vallier, L. (2015) Generation of human induced pluripotent stem cells from peripheral blood mononuclear cells using Sendai virus, inMethods in Molecular Biology series, Induced Pluripotent Stem (iPS) Cells: Methods and Protocols (Turksen, K., and Nagy, A., eds.) Humana Press, N. Y., pp. 23–31.CrossRefGoogle Scholar
  32. 32.
    Okita, K., Yamakawa, T., Matsumura, Y., Sato, Y., Amano, N., Watanabe, A., Goshima, N., and Yamanaka, S. (2013) An efficient nonviral method to generate integration–free human–induced pluripotent stem cells from cord blood and peripheral blood cells, Stem Cells, 31, 458–466.CrossRefGoogle Scholar
  33. 33.
    Medvedev, S. P., Grigor’eva, E. V., Shevchenko, A. I., Malakhova, A. A., Dementyeva, E. V., Shilov, A. A., Pokushalov, E. A., Zaidman, A. M., Aleksandrova, M. A., Plotnikov, E. Y., Sukhikh, G. T., and Zakian, S. M. (2011) Human induced pluripotent stem cells derived from fetal neural stem cells successfully undergo directed differentia–tion into cartilage, Stem Cells Dev., 20, 1099–1112.CrossRefGoogle Scholar
  34. 34.
    Minina, J. M., Borodin, P. M., Searle, J. B., Volobouev, V. T., and Zhdanova, N. S. (2007) Standard DAPI karyotype of the common shrew Sorex araneus L. (Soricidae, Eulipotyphla), Russ. J. Teriol., 6, 3–6.CrossRefGoogle Scholar
  35. 35.
    DeKelver, R. C., Choi, V. M., Moehle, E. A., Paschon, D. E., Hockemeyer, D., Meijsing, S. H., Sancak, Y., Cui, X., Steine, E. J., Miller, J. C., Tam, P., Bartsevich, V. V., Meng, X., Rupniewski, I., Gopalan, S. M., Sun, H. C., Pitz, K. J., Rock, J. M., Zhang, L., Davis, G. D., Rebar, E. J., Cheeseman, I. M., Yamamoto, K. R., Sabatini, D. M., Jaenisch, R., Gregory, P. D., and Urnov, F. D. (2010) Functional genomics, proteomics, and regulatory DNA analysis in isogenic settings using zinc finger nuclease–driv–en transgenesis into a safe harbor locus in the human genome, Genome Res., 20, 1133–1142.CrossRefPubMedCentralGoogle Scholar
  36. 36.
    Papapetrou, E. P., and Schambach, A. (2016) Gene inser–tion into genomic safe harbors for human gene therapy, Mol. Ther. Am. Soc. Gene Cell Ther., 24, 678–684.CrossRefGoogle Scholar
  37. 37.
    Wadkin, L. E., Elliot, L. F., Neganova, I., Parker, N. G., Chichagova, V., Swan, G., Laude, A., Lako, M., and Shukurov, A. (2017) Dynamics of single human embryonic stem cells and their pairs: a quantitative analysis, Sci. Rep., 7, 570.CrossRefPubMedCentralGoogle Scholar
  38. 38.
    Gonzalez, F., Zhu, Z., Shi, Z.–D., Lelli, K., Verma, N., Li, Q. V., and Huangfu, D. (2014) An iCRISPR platform for rapid, multiplexable, and inducible genome editing in human pluripotent stem cells, Cell Stem Cell, 15, 215–226.CrossRefPubMedCentralGoogle Scholar
  39. 39.
    Kleinstiver, B. P., Pattanayak, V., Prew, M. S., Tsai, S. Q., Nguyen, N. T., Zheng, Z., and Joung, J. K. (2016) High–fidelity CRISPR–Cas9 nucleases with no detectable genome–wide off–target effects, Nature, 529, 490–495.CrossRefPubMedCentralGoogle Scholar
  40. 40.
    Gutscher, M., Sobotta, M. C., Wabnitz, G. H., Ballikaya, S., Meyer, A. J., Samstag, Y., and Dick, T. P. (2009) Proximity–based protein thiol oxidation by H2O2–scaveng–ing peroxidases, J. Biol. Chem., 284, 31532–31540.CrossRefPubMedCentralGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • E. I. Ustyantseva
    • 1
    • 2
    • 3
    • 4
  • S. P. Medvedev
    • 1
    • 2
    • 3
    • 4
  • A. S. Vetchinova
    • 5
  • J. M. Minina
    • 1
  • S. N. Illarioshkin
    • 5
  • S. M. Zakian
    • 1
    • 2
    • 3
    • 4
    Email author
  1. 1.Federal Research Center Institute of Cytology and GeneticsSiberian Branch of the Russian Academy of SciencesNovosibirskRussia
  2. 2.Institute of Chemical Biology and Fundamental MedicineSiberian Branch of the Russian Academy of SciencesNovosibirskRussia
  3. 3.Meshalkin National Medical Research CenterMinistry of Health of the Russian FederationNovosibirskRussia
  4. 4.Novosibirsk State UniversityNovosibirskRussia
  5. 5.Research Center of NeurologyMoscowRussia

Personalised recommendations