Biochemistry (Moscow)

, Volume 84, Issue 3, pp 272–282 | Cite as

Extracellular MicroRNAs and Mitochondrial DNA as Potential Biomarkers of Arrhythmogenic Cardiomyopathy

  • A. A. KhudiakovEmail author
  • N. A. Smolina
  • K. I. Perepelina
  • A. B. Malashicheva
  • A. A. Kostareva


Differential diagnosis of arrhythmogenic cardiomyopathy (ACM) during the disease latent phase is a challenging clinical problem that requires identification of early ACM biomarkers. Because extracellular nucleic acids are stable, specific, and can be easily detected, they can be used as reliable biomarkers of various diseases. In this study, we analyzed the levels of extracellular microRNAs and mitochondrial DNA in the conditioned medium collected from cardiomyocytes differentiated from induced pluripotent stem cells of ACM patients and healthy donor. Several microRNAs were expressed differently by the affected and healthy cardiomyocytes; therefore, they could be considered as potential ACM biomarkers.


arrhythmogenic cardiomyopathy cardiomyocytes microRNA mitochondrial DNA induced pluripotent stem cells 



arrhythmogenic cardiomyopathy




induced pluripotent stem cell


microRNA (miRNA)


mitochondrial DNA


phosphate buffered saline


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Thiene, G., Nava, A., Corrado, D., Rossi, L., and Pennelli, N. (1988) Right ventricular cardiomyopathy and sudden death in young people, N. Engl. J. Med., 318, 129–133.CrossRefGoogle Scholar
  2. 2.
    Lazzarini, E., Jongbloed, J. D. H., Pilichou, K., Thiene, G., Basso, C., Bikker, H., Charbon, B., Swertz, M., van Tintelen, J. P., and van der Zwaag, P. A. (2015) The ARVD/C genetic variants database: 2014 update, Hum. Mutat., 36, 403–410.CrossRefGoogle Scholar
  3. 3.
    Corrado, D., Basso, C., and Thiene, G. (2009) Arrhythmogenic right ventricular cardiomyopathy: an update, Heart, 95, 766–773.CrossRefGoogle Scholar
  4. 4.
    Bartel, D. P. (2004) MicroRNAs: genomics, biogenesis, mechanism, and function, Cell, 116, 281–297.CrossRefGoogle Scholar
  5. 5.
    He, L., and Hannon, G. J. (2004) MicroRNAs: small RNAs with a big role in gene regulation, Nat. Rev. Genet., 5, 522–531.CrossRefGoogle Scholar
  6. 6.
    Sohel, M. H. (2016) Extracellular/circulating microRNAs: release mechanisms, functions and challenges, Achiev. Life Sci., 10, 175–186.CrossRefGoogle Scholar
  7. 7.
    Arroyo, J. D., Chevillet, J. R., Kroh, E. M., Ruf, I. K., Pritchard, C. C., Gibson, D. F., Mitchell, P. S., Bennett, C. F., Pogosova–Agadjanyan, E. L., Stirewalt, D. L., Tait, J. F., and Tewari, M. (2011) Argonaute 2 complexes carry a pop–ulation of circulating microRNAs independent of vesicles in human plasma, Proc. Natl. Acad. Sci. USA, 108, 5003–5008.CrossRefGoogle Scholar
  8. 8.
    Turchinovich, A., Weiz, L., Langheinz, A., and Burwinkel, B. (2011) Characterization of extracellular circulating microRNA, Nucleic Acids Res., 39, 7223–7233.CrossRefGoogle Scholar
  9. 9.
    Vickers, K. C., Palmisano, B. T., Shoucri, B. M., Shamburek, R. D., and Remaley, A. T. (2011) MicroRNAs are transported in plasma and delivered to recipient cells by high–density lipoproteins, Nat. Cell Biol., 13, 423–433.CrossRefGoogle Scholar
  10. 10.
    Wagner, J., Riwanto, M., Besler, C., Knau, A., Fichtlscherer, S., Roxe, T., Zeiher, A. M., Landmesser, U., and Dimmeler, S. (2013) Characterization of levels and cel–lular transfer of circulating lipoprotein–bound microRNAs, Arterioscler. Thromb. Vasc. Biol., 33, 1392–1400.CrossRefGoogle Scholar
  11. 11.
    Sommariva, E., D’Alessandra, Y., Farina, F. M., Casella, M., Cattaneo, F., Catto, V., Chiesa, M., Stadiotti, I., Brambilla, S., Dello Russo, A., Carbucicchio, C., Vettor, G., Riggio, D., Sandri, M. T., Barbuti, A., Vernillo, G., Muratori, M., Dal Ferro, M., Sinagra, G., Moimas, S., Giacca, M., Colombo, G. I., Pompilio, G., and Tondo, C. (2017) MiRNA–320a as a potential novel circulating bio–marker of arrhythmogenic cardiomyopathy, Sci. Rep., 7, 4802, doi: 10.1038/s41598–017–05001–z.CrossRefGoogle Scholar
  12. 12.
    Zhang, H., Liu, S., Dong, T., Yang, J., Xie, Y., Wu, Y., Kang, K., Hu, S., Gou, D., and Wei, Y. (2016) Profiling of differentially expressed microRNAs in arrhythmogenic right ventricular cardiomyopathy, Sci. Rep., 6, 28101, doi: 10.1038/srep28101.CrossRefGoogle Scholar
  13. 13.
    Sun, J.–Y., Huang, Y., Li, J.–P., Zhang, X., Wang, L., Meng, Y.–L., Yan, B., Bian, Y.–Q., Zhao, J., Wang, W.–Z., Yang, A.–G., and Zhang, R. (2012) MicroRNA–320a sup–presses human colon cancer cell proliferation by directly targeting beta–catenin, Biochem. Biophys. Res. Commun., 420, 787–792.CrossRefGoogle Scholar
  14. 14.
    Huang, K., Zhang, J.–X., Han, L., You, Y.–P., Jiang, T., Pu, P.–Y., and Kang, C.–S. (2010) MicroRNA roles in beta–catenin pathway, Mol. Cancer, 9, 252.CrossRefGoogle Scholar
  15. 15.
    Hashimi, S. T., Fulcher, J. A., Chang, M. H., Gov, L., Wang, S., and Lee, B. (2009) MicroRNA profiling identi–fies miR–34a and miR–21 and their target genes JAG1 and WNT1 in the coordinate regulation of dendritic cell differ–entiation, Blood, 114, 404–414.CrossRefGoogle Scholar
  16. 16.
    Lin, C.–W., Chang, Y.–L., Chang, Y.–C., Lin, J.–C., Chen, C.–C., Pan, S.–H., Wu, C.–T., Chen, H.–Y., Yang, S.–C., Hong, T.–M., and Yang, P.–C. (2013) MicroRNA–135b pro–motes lung cancer metastasis by regulating multiple targets in the Hippo pathway and LZTS1, Nat. Commun., 4, 1877.CrossRefGoogle Scholar
  17. 17.
    Yamada, S., Hsiao, Y.–W., Chang, S.–L., Lin, Y.–J., Lo, L.–W., Chung, F.–P., Chiang, S.–J., Hu, Y.–F., Tuan, T.–C., Chao, T.–F., Liao, J.–N., Lin, C.–Y., Chang, Y.–T., Te, A. L. D., Tsai, Y.–N., and Chen, S.–A. (2018) Circulating microRNAs in arrhythmogenic right ventricular cardiomyo–pathy with ventricular arrhythmia, Europace, 20, f37–f45.Google Scholar
  18. 18.
    Sagan, L. (1967) On the origin of mitosing cells, J. Theor. Biol., 14, 255–274.CrossRefGoogle Scholar
  19. 19.
    Gray, M. W., Burger, G., and Lang, B. F. (2001) The origin and early evolution of mitochondria, Genome Biol., 2, doi: 10.1186/gb–2001–2–6–reviews1018.Google Scholar
  20. 20.
    Zhang, Q., Raoof, M., Chen, Y., Sumi, Y., Sursal, T., Junger, W., Brohi, K., Itagaki, K., and Hauser, C. J. (2010) Circulating mitochondrial DAMPs cause inflammatory responses to injury, Nature, 464, 104–107.CrossRefGoogle Scholar
  21. 21.
    Chiu, R. W. K., Chan, L. Y. S., Lam, N. Y. L., Tsui, N. B. Y., Ng, E. K. O., Rainer, T. H., and Lo, Y. M. D. (2003) Quantitative analysis of circulating mitochondrial DNA in plasma, Clin. Chem., 49, 719–726.CrossRefGoogle Scholar
  22. 22.
    Bliksoen, M., Mariero, L. H., Ohm, I. K., Haugen, F., Yndestad, A., Solheim, S., Seljeflot, I., Ranheim, T., Andersen, G. O., Aukrust, P., Valen, G., and Vinge, L. E. (2012) Increased circulating mitochondrial DNA after myocardial infarction, Int. J. Cardiol., 158, 132–134.CrossRefGoogle Scholar
  23. 23.
    Sudakov, N. P., Apartsin, K. A., Lepekhova, S. A., Nikiforov, S. B., Katyshev, A. I., Lifshits, G. I., Vybivantseva, A. V., and Konstantinov, Y. M. (2017) The level of free circulating mitochondrial DNA in blood as predictor of death in case of acute coronary syndrome, Eur. J. Med. Res., 22, 1.CrossRefGoogle Scholar
  24. 24.
    Oka, T., Hikoso, S., Yamaguchi, O., Taneike, M., Takeda, T., Tamai, T., Oyabu, J., Murakawa, T., Nakayama, H., Nishida, K., Akira, S., Yamamoto, A., Komuro, I., and Otsu, K. (2012) Mitochondrial DNA that escapes from autophagy causes inflammation and heart failure, Nature, 485, 251–255.CrossRefGoogle Scholar
  25. 25.
    Ye, W., Tang, X., Yang, Z., Liu, C., Zhang, X., Jin, J., and Lyu, J. (2017) Plasma–derived exosomes contribute to inflammation via the TLR9–NF–kappaB pathway in chron–ic heart failure patients, Mol. Immunol., 87, 114–121.CrossRefGoogle Scholar
  26. 26.
    Khudiakov, A. A., Kostina, D. A., Kostareva, A. A., Tomilin, A. N., and Malashicheva, A. B. (2015) Influence of mutations in the plakophilin–2 gene on the activity of the canonic signaling pathway Wnt, Tsitologiya, 57, 868–875.Google Scholar
  27. 27.
    Khudiakov, A., Kostina, D., Zlotina, A., Yany, N., Sergushichev, A., Pervunina, T., Tomilin, A., Kostareva, A., and Malashicheva, A. (2017) Generation of iPSC line from patient with arrhythmogenic right ventricular cardiomy–opathy carrying mutations in PKP2 gene, Stem Cell Res., 24, 85–88.CrossRefGoogle Scholar
  28. 28.
    Burridge, P. W., Matsa, E., Shukla, P., Lin, Z. C., Churko, J. M., Ebert, A. D., Lan, F., Diecke, S., Huber, B., Mordwinkin, N. M., Plews, J. R., Abilez, O. J., Cui, B., Gold, J. D., and Wu, J. C. (2014) Chemically defined gener–ation of human cardiomyocytes, Nat. Methods, 11, 855–860.CrossRefGoogle Scholar
  29. 29.
    Rothfuss, O., Gasser, T., and Patenge, N. (2010) Analysis of differential DNA damage in the mitochondrial genome employing a semi–long run real–time PCR approach, Nucleic Acids Res., 38, e24.CrossRefGoogle Scholar
  30. 30.
    Chen, X., Ba, Y., Ma, L., Cai, X., Yin, Y., Wang, K., Guo, J., Zhang, Y., Chen, J., Guo, X., Li, Q., Li, X., Wang, W., Zhang, Y., Wang, J., Jiang, X., Xiang, Y., Xu, C., Zheng, P., Zhang, J., Li, R., Zhang, H., Shang, X., Gong, T., Ning, G., Wang, J., Zen, K., Zhang, J., and Zhang, C.–Y. (2008) Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases, Cell Res., 18, 997–1006.CrossRefGoogle Scholar
  31. 31.
    Gupta, S. K., Bang, C., and Thum, T. (2010) Circulating microRNAs as biomarkers and potential paracrine media–tors of cardiovascular disease, Circ. Cardiovasc. Genet., 3, 484–488.CrossRefGoogle Scholar
  32. 32.
    Wang, K., Zhang, S., Marzolf, B., Troisch, P., Brightman, A., Hu, Z., Hood, L. E., and Galas, D. J. (2009) Circulating microRNAs, potential biomarkers for drug–induced liver injury, Proc. Natl. Acad. Sci. USA, 106, 4402–4407.CrossRefGoogle Scholar
  33. 33.
    Casini, S., Verkerk, A. O., and Remme, C. A. (2017) Human iPSC–derived cardiomyocytes for investigation of disease mechanisms and therapeutic strategies in inherited arrhythmia syndromes: strengths and limitations, Cardiovasc. Drugs Ther., 31, 325–344.CrossRefGoogle Scholar
  34. 34.
    Fu, J.–D., Rushing, S. N., Lieu, D. K., Chan, C. W., Kong, C.–W., Geng, L., Wilson, K. D., Chiamvimonvat, N., Boheler, K. R., Wu, J. C., Keller, G., Hajjar, R. J., and Li, R. A. (2011) Distinct roles of microRNA–1 and–499 in ventricular specification and functional maturation of human embryonic stem cell–derived cardiomyocytes, PLoS One, 6, e27417.CrossRefGoogle Scholar
  35. 35.
    Dubash, A. D., Kam, C. Y., Aguado, B. A., Patel, D. M., Delmar, M., Shea, L. D., and Green, K. J. (2016) Plakophilin–2 loss promotes TGF–β1/p38 MAPK–depend–ent fibrotic gene expression in cardiomyocytes, J. Cell Biol., 212, 425–438.CrossRefGoogle Scholar
  36. 36.
    Chen, S. N., Gurha, P., Lombardi, R., Ruggiero, A., Willerson, J. T., and Marian, A. J. (2014) The Hippo path–way is activated and is a causal mechanism for adipogenesis in arrhythmogenic cardiomyopathy, Circ. Res., 114, 454–468.CrossRefGoogle Scholar
  37. 37.
    Kim, C., Wong, J., Wen, J., Wang, S., Wang, C., Spiering, S., Kan, N. G., Forcales, S., Puri, P. L., Leone, T. C., Marine, J. E., Calkins, H., Kelly, D. P., Judge, D. P., and Chen, H.–S. V. (2013) Studying arrhythmogenic right ven–tricular dysplasia with patient–specific iPSCs, Nature, 494, 105–110.CrossRefGoogle Scholar
  38. 38.
    Sommariva, E., Brambilla, S., Carbucicchio, C., Gambini, E., Meraviglia, V., Dello Russo, A., Farina, F. M., Casella, M., Catto, V., Pontone, G., Chiesa, M., Stadiotti, I., Cogliati, E., Paolin, A., Ouali Alami, N., Preziuso, C., D’Amati, G., Colombo, G. I., Rossini, A., Capogrossi, M. C., Tondo, C., and Pompilio, G. (2016) Cardiac mes–enchymal stromal cells are a source of adipocytes in arrhythmogenic cardiomyopathy, Eur. Heart J., 37, 1835–1846.CrossRefGoogle Scholar
  39. 39.
    Kuwabara, Y., Ono, K., Horie, T., Nishi, H., Nagao, K., Kinoshita, M., Watanabe, S., Baba, O., Kojima, Y., Shizuta, S., Imai, M., Tamura, T., Kita, T., and Kimura, T. (2011) Increased microRNA–1 and microRNA–133a levels in serum of patients with cardiovascular disease indicate myocardial damage, Circ. Cardiovasc. Genet., 4, 446–454.CrossRefGoogle Scholar
  40. 40.
    Thum, T., Gross, C., Fiedler, J., Fischer, T., Kissler, S., Bussen, M., Galuppo, P., Just, S., Rottbauer, W., Frantz, S., Castoldi, M., Soutschek, J., Koteliansky, V., Rosenwald, A., Basson, M. A., Licht, J. D., Pena, J. T. R., Rouhanifard, S. H., Muckenthaler, M. U., Tuschl, T., Martin, G. R., Bauersachs, J., and Engelhardt, S. (2008) MicroRNA–21 contributes to myocardial disease by stimu–lating MAP kinase signalling in fibroblasts, Nature, 456, 980–984.CrossRefGoogle Scholar
  41. 41.
    Roy, S., Khanna, S., Hussain, S.–R. A., Biswas, S., Azad, A., Rink, C., Gnyawali, S., Shilo, S., Nuovo, G. J., and Sen, C. K. (2009) MicroRNA expression in response to murine myocardial infarction: miR–21 regulates fibroblast metalloprotease–2 via phosphatase and tensin homologue, Cardiovasc. Res., 82, 21–29.CrossRefGoogle Scholar
  42. 42.
    Van Rooij, E., Sutherland, L. B., Thatcher, J. E., DiMaio, J. M., Naseem, R. H., Marshall, W. S., Hill, J. A., and Olson, E. N. (2008) Dysregulation of microRNAs after myocardial infarction reveals a role of miR–29 in cardiac fibrosis, Proc. Natl. Acad. Sci. USA, 105, 13027–13032.CrossRefGoogle Scholar
  43. 43.
    Matkovich, S. J., Wang, W., Tu, Y., Eschenbacher, W. H., Dorn, L. E., Condorelli, G., Diwan, A., Nerbonne, J. M., and Dorn, G. W. (2010) MicroRNA–133a protects against myocardial fibrosis and modulates electrical repolarization without affecting hypertrophy in pressure–overloaded adult hearts, Circ. Res., 106, 166–175.CrossRefGoogle Scholar
  44. 44.
    Gerin, I., Bommer, G. T., McCoin, C. S., Sousa, K. M., Krishnan, V., and MacDougald, O. A. (2010) Roles for miRNANA–378/378* in adipocyte gene expression and lipogenesis, Am. J. Physiol. Endocrinol. Metab., 299, E198–206.Google Scholar
  45. 45.
    Beltrami, C., Besnier, M., Shantikumar, S., Shearn, A. I. U., Rajakaruna, C., Laftah, A., Sessa, F., Spinetti, G., Petretto, E., Angelini, G. D., and Emanueli, C. (2017) Human pericardial fluid contains exosomes enriched with cardiovascular–expressed microRNAs and promotes thera–peutic angiogenesis, Mol. Ther., 25, 679–693.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • A. A. Khudiakov
    • 1
    Email author
  • N. A. Smolina
    • 1
  • K. I. Perepelina
    • 1
    • 2
  • A. B. Malashicheva
    • 1
    • 2
  • A. A. Kostareva
    • 1
  1. 1.Almazov National Medical Research CenterSt. PetersburgRussia
  2. 2.St. Petersburg State UniversitySt. PetersburgRussia

Personalised recommendations