Advertisement

Biochemistry (Moscow)

, Volume 84, Issue 3, pp 220–231 | Cite as

Modern Technologies Deriving Human Primordial Germ Cells in vitro

  • V. K. AbdyyevEmail author
  • E. B. Dashinimayev
  • I. V. Neklyudova
  • E. A. Vorotelyak
  • A. V. Vasiliev
Review
  • 12 Downloads

Abstract

Primordial germ cells (PGCs) are a unique type of stem cells capable of giving rise to totipotent stem cells and ensuring the fertility of an organism and the transfer of its genome to the next generation. PGC research is an important perspective research field of developmental biology that handles many questions of embryogenesis and holds promise for treatments of infertility in the future. Considering ethical concerns related to human embryos, the main research approach in understanding the biology of human PGCs is in vitro studies. In this review, we consider the historical perspective of human PGC studies in vitro, the main existing models, and further outlooks and applications in medicine and science.

Keywords

primordial germ cells PGCs iPSCs ESCs VASA PRDM1 human 

Abbreviations

BMP

bone morphogenetic protein

EBs

embryoid bodies

ESCs

embryonic stem cells

hFGSCs

human fetal gonadal stromal cells

hPGCs

human primordial germ cells

(i)PSCs

(induced) pluripotent stem cells

PGCs

primordial germ cells

TNAP

tissue-nonspecific alkaline phosphatase

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kurimoto, K., Yabuta, Y., Ohinata, Y., Shigeta, M., Yamanaka, K., and Saitou, M. (2008) Complex genome–wide transcription dynamics orchestrated by Blimp1 for the specification of the germ cell lineage in mice, Genes Dev., 22, 1617–1635, doi: 10.1101/gad.1649908.CrossRefGoogle Scholar
  2. 2.
    Tanaka, S. S., Yamaguchi, Y. L., Tsoi, B., Lickert, H., and Tam, P. P. (2005) IFITM/mil/fragilis family proteins IFITM1 and IFITM3 play distinct roles in mouse primor–dial germ cell homing and repulsion, Dev. Cell, 9, 745–756, doi: 10.1016/j.devcel.2005.10.010.CrossRefGoogle Scholar
  3. 3.
    Ginsburg, M., Snow, M. H., and McLaren, A. (1990) Primordial germ cells in the mouse embryo during gastrula–tion, Development, 110, 521–528.Google Scholar
  4. 4.
    Irie, N., Tang, W. W., and Azim Surani, M. (2014) Germ cell specification and pluripotency in mammals: a perspective from early embryogenesis, Reprod. Med. Biol., 13, 203–215.CrossRefGoogle Scholar
  5. 5.
    Saitou, M., and Yamaji, M. (2010) Germ cell specification in mice: signaling, transcription regulation, and epigenetic consequences, Reproduction, 139, 931–942.CrossRefGoogle Scholar
  6. 6.
    De Felici, M. (2013) Origin, migration, and proliferation of human primordial germ cells, in Oogenesis (Coticchio, G., Albertini, D. F., and De Santis, L., eds.) Springer, London, pp. 19–38.Google Scholar
  7. 7.
    Leitch, H. G., Tang, W. W., and Surani, M. A. (2013) Primordial germ–cell development and epigenetic repro–gramming in mammals, Curr. Top. Dev. Biol., 104, 149–187.CrossRefGoogle Scholar
  8. 8.
    Kozhukhar, V. G. (2011) Primordial germ cells in mammals and human. Origin, identification, migration, Tsitologiya, 53, 211–220.Google Scholar
  9. 9.
    Lawson, K. A., Dunn, N. R., Roelen, B. A., Zeinstra, L. M., Davis, A. M., Wright, C. V., Korving, J. P., and Hogan, B. L. (1999) Mouse embryo Bmp4 is required for the generation of primordial germ cells in the mouse embryo, Genes Dev., 13, 424–436.CrossRefGoogle Scholar
  10. 10.
    Ohinata, Y., Ohta, H., Shigeta, M., Yamanaka, K., Wakayama, T., and Saitou, M. (2009) A signaling principle for the specification of the germ cell lineage in mice, Cell, 137, 571–584, doi: 10.1016/j.cell.2009.03.014.CrossRefGoogle Scholar
  11. 11.
    Okamura, D., Hayashi, K., and Matsui, Y. (2005) Mouse epiblasts change responsiveness to BMP4 signal required for PGC formation through functions of extraembryonic ectoderm, Mol. Reprod. Dev., 70, 20–29.CrossRefGoogle Scholar
  12. 12.
    Ying, Y., and Zhao, G. Q. (2001) Cooperation of ento–derm–derived BMP2 and extraembryonic ectoderm–derived BMP4 in primordial germ cell generation in the mouse, Dev. Biol., 232, 484–492.CrossRefGoogle Scholar
  13. 13.
    Lange, U. C., Saitou, M., Western, P. S., Barton, S. C., and Surani, M. A. (2003) The fragilis interferon–inducible gene family of transmembrane proteins is associated with germ cell specification in mice, BMC Dev. Biol., 3, 1.CrossRefGoogle Scholar
  14. 14.
    Ohinata, Y., Payer, B., O’Carroll, D., Ancelin, K., Ono, Y., Sano, M., Barton, S. C., Obukhanych, T., Nussenzweig, M., Tarakhovsky, A., and Surani, M. A. (2005) Blimp1 is a critical determinant of the germ cell lineage in mice, Nature, 436, 207–213.CrossRefGoogle Scholar
  15. 15.
    Kehler, J., Tolkunova, E., Koschorz, B., Pesce, M., Gentile, L., Boiani, M., Lomeli, H., Nagy, A., McLaughlin, K. J., Scholer, H. R., and Tomilin, A. (2004) Oct4 is required for primordial germ cell survival, EMBO Rep., 5, 1078–1083.CrossRefGoogle Scholar
  16. 16.
    Okamura, D., Tokitake, Y., Niwa, H., and Matsui, Y. (2008) Requirement of Oct3/4 function for germ cell spec–ification, Dev. Biol., 317, 576–584.CrossRefGoogle Scholar
  17. 17.
    Chambers, I., Silva, J., Colby, D., Nichols, J., Nijmeijer, B., Robertson, M., Vrana, J., Jones, K., Grotewold, L., and Smith, A. (2007) Nanog safeguards pluripotency and medi–ates germline development, Nature, 450, 1230–1234.CrossRefGoogle Scholar
  18. 18.
    Yamaguchi, S., Kurimoto, K., Yabuta, Y., Sasaki, H., Nakatsuji, N., Saitou, M., and Tada, T. (2009) Conditional knockdown of Nanog induces apoptotic cell death in mouse migrating primordial germ cells, Development, 136, 4011–4020.CrossRefGoogle Scholar
  19. 19.
    Murakami, K., Gunesdogan, U., Zylicz, J. J., Tang, W. W. C., Sengupta, R., Kobayashi, T., Kim, S., Butler, R., Dietmann, S., and Surani, A. M. (2016) NANOG alone induces germ cells in primed epiblast in vitro by activation of enhancers, Nature, 529, 1–22.CrossRefGoogle Scholar
  20. 20.
    Yamaji, M., Seki, Y., Kurimoto, K., Yabuta, Y., Yuasa, M., Shigeta, M., Yamanaka, K., Ohinata, Y., and Saitou, M. (2008) Critical function of Prdm14 for the establishment of the germ cell lineage in mice, Nat. Genet., 40, 1016–1022.CrossRefGoogle Scholar
  21. 21.
    Grabole, N., Tischler, J., Hackett, J. A., Kim, S., Tang, F., Leitch, H. G., Magnusdottir, E., and Surani, M. A. (2013) Prdm14 promotes germline fate and naive pluripotency by repressing FGF signalling and DNA methylation, EMBO Rep., 14, 629–637.CrossRefGoogle Scholar
  22. 22.
    Gell, J. J., Zhao, J., Chen, D., Hunt, T. J., and Clark, A. T. (2018) PRDM14 is expressed in germ cell tumors with con–stitutive overexpression altering human germline differenti–ation and proliferation, Stem Cell Res., 27, 46–56.CrossRefGoogle Scholar
  23. 23.
    Weber, S., Eckert, D., Nettersheim, D., Gillis, A. J., Schafer, S., Kuckenberg, P., Ehlermann, J., Werling, U., Biermann, K., Looijenga, L. H., and Schorle, H. (2010) Critical function of AP–2 gamma/TCFAP2C in mouse embryonic germ cell maintenance, Biol. Reprod., 82, 214–223.CrossRefGoogle Scholar
  24. 24.
    Kumar, D. L., and Defalco, T. (2017) Of mice and men: in vivo and in vitro studies of primordial germ cell specifica–tion, Semin. Reprod. Med., 35, 139–146.CrossRefGoogle Scholar
  25. 25.
    Vincent, S. D. (2005) The zinc finger transcriptional repressor Blimp1/Prdm1 is dispensable for early axis for–mation but is required for specification of primordial germ cells in the mouse, Development, 132, 1315–1325.CrossRefGoogle Scholar
  26. 26.
    Irie, N., Weinberger, L., Tang, W. W., Kobayashi, T., Viukov, S., Manor, Y. S., Dietmann, S., Hanna, J. H., and Surani, M. A. (2015) SOX17 is a critical specifier of human primordial germ cell fate, Cell, 160, 253–268.CrossRefGoogle Scholar
  27. 27.
    Tsuda, M., Sasaoka, Y., Kiso, M., Abe, K., Haraguchi, S., Kobayashi, S., and Saga, Y. (2003) Conserved role of nanos proteins in germ cell development, Science, 301, 1239–1241.CrossRefGoogle Scholar
  28. 28.
    Suzuki, H., Tsuda, M., Kiso, M., and Saga, Y. (2008) Nanos3 maintains the germ cell lineage in the mouse by suppressing both Bax–dependent and–independent apop–totic pathways, Dev. Biol., 318, 133–142.CrossRefGoogle Scholar
  29. 29.
    Tanaka, S. S., Toyooka, Y., Akasu, R., Katoh–Fukui, Y., Nakahara, Y., Suzuki, R., Yokoyama, M., and Noce, T. (2000) The mouse homolog of Drosophila Vasa is required for the development of male germ cells, Genes Dev., 14, 841–853.Google Scholar
  30. 30.
    Panula, S., Reda, A., Stukenborg, J.–B. B., Ramathal, C., Sukhwani, M., Albalushi, H., Edsgard, D., Nakamura, M., Soder, O., Orwig, K. E., Yamanaka, S., Reijo Pera, R. A., and Hovatta, O. (2016) Over expression of NANOS3 and DAZL in human embryonic stem cells, PLoS One, 11, e0165268.CrossRefGoogle Scholar
  31. 31.
    Schrans–Stassen, B. H., Saunders, P. T., Cooke, H. J., and de Rooij, D. G. (2001) Nature of the spermatogenic arrest in Dazl−/− mice, Biol. Reprod., 65, 771–776.CrossRefGoogle Scholar
  32. 32.
    Buehr, M., McLaren, A., Bartley, A., and Darling, S. (1993) Proliferation and migration of primordial germ cells in We/We mouse embryos, Dev. Dyn., 198, 182–189.CrossRefGoogle Scholar
  33. 33.
    Kudo, T., Kaneko, M., Iwasaki, H., Togayachi, A., Nishihara, S., Abe, K., and Narimatsu, H. (2004) Normal embryonic and germ cell development in mice lacking α1,3–fucosyltransferase IX (Fut9) which show disappear–ance of stage–specific embryonic antigen 1, Mol. Cell. Biol., 24, 4221–4228.CrossRefGoogle Scholar
  34. 34.
    Payer, B., Saitou, M., Barton, S. C., Thresher, R., Dixon, J. P. C., Zahn, D., Colledge, W. H., Carlton, M. B., Nakano, T., and Surani, M. A. (2003) Stella is a maternal effect gene required for normal early development in mice, Curr. Biol., 13, 2110–2117.CrossRefGoogle Scholar
  35. 35.
    Saitou, M., Kagiwada, S., and Kurimoto, K. (2012) Epigenetic reprogramming in mouse pre–implantation development and primordial germ cells, Development, 139, 15–31.CrossRefGoogle Scholar
  36. 36.
    De Felici, M. (2009) Primordial germ cell biology at the beginning of the XXI century, Int. J. Dev. Biol., 53, 891–894.CrossRefGoogle Scholar
  37. 37.
    Liu, P., Wakamiya, M., Shea, M. J., Albrecht, U., Behringer, R. R., and Bradley, A. (1999) Requirement for Wnt3 in vertebrate axis formation, Nat. Genet., 22, 361–365.CrossRefGoogle Scholar
  38. 38.
    Yoon, Y., Huang, T., Tortelote, G. G., Wakamiya, M., Hadjantonakis, A. K., Behringer, R. R., and Rivera–Perez, J. A. (2015) Extra–embryonic Wnt3 regulates the establish–ment of the primitive streak in mice, Dev. Biol., 403, 80–88.CrossRefGoogle Scholar
  39. 39.
    McKay, D. G., Hertig, A. T., Adams, E. C., and Danziger, S. (1953) Histochemical observations on the germ cells of human embryos, Anat. Rec., 117, 201–219.CrossRefGoogle Scholar
  40. 40.
    Kellokumpu–Lehtinen, P. L., and Soderstrom, K. O. (1978) Occurrence of nuage in fetal human germ cells, Cell Tissue Res., 194, 171–177.CrossRefGoogle Scholar
  41. 41.
    Findley, S. D., Tamanaha, M., Clegg, N. J., and Ruohola–Baker, H. (2003) Maelstrom, a Drosophila spindle–class gene, encodes a protein that colocalizes with Vasa and RDE1/AGO1 homolog, Aubergine, in nuage, Development, 130, 859–871.Google Scholar
  42. 42.
    Ishidate, T., Ozturk, A. R., Durning, D. J., Sharma, R., Shen, E. Z., Chen, H., Seth, M., Shirayama, M., and Mello, C. C. (2018) ZNFX–1 functions within perinuclear nuage to balance epigenetic signals, Mol. Cell, 70, 639–649.e6.CrossRefGoogle Scholar
  43. 43.
    Soper, S. F. C., van der Heijden, G. W., Hardiman, T. C., Goodheart, M., Martin, S. L., de Boer, P., and Bortvin, A. (2008) Mouse maelstrom, a component of nuage, is essen–tial for spermatogenesis and transposon repression in meio–sis, Dev. Cell, 15, 285–297.CrossRefGoogle Scholar
  44. 44.
    Morohaku, K., Tanimoto, R., Sasaki, K., Kawahara–Miki, R., Kono, T., Hayashi, K., Hirao, Y., and Obata, Y. (2016) Complete in vitro generation of fertile oocytes from mouse primordial germ cells, Proc. Natl. Acad. Sci. USA, 113, 9021–9026.CrossRefGoogle Scholar
  45. 45.
    Zhou, Q., Wang, M., Yuan, Y., Wang, X., Fu, R., Wan, H., Hirao, Y., and Zhou, Q. (2016) Complete meiosis from embryonic stem cell–derived germ cells in vitro, Cell Stem Cell, 18, 330–340.CrossRefGoogle Scholar
  46. 46.
    Turnpenny, L., Brickwood, S., Spalluto, C. M., Piper, K., Cameron, I. T., Wilson, D. I., and Hanley, N. A. (2003) Derivation of human embryonic germ cells: an alternative source of pluripotent stem cells, Stem Cells, 21, 598–609.CrossRefGoogle Scholar
  47. 47.
    Clark, A. T., Bodnar, M. S., Fox, M., Rodriquez, R. T., Abeyta, M. J., Firpo, M. T., and Pera, R. A. (2004) Spontaneous differentiation of germ cells from human embryonic stem cells in vitro, Hum. Mol. Genet., 13, 727–739.CrossRefGoogle Scholar
  48. 48.
    Tilgner, K., Atkinson, S. P., Golebiewska, A., Stojkovic, M., Lako, M., and Armstrong, L. (2008) Isolation of pri–mordial germ cells from differentiating human embryonic stem cells, Stem Cells, 26, 3075–3085.CrossRefGoogle Scholar
  49. 49.
    Kee, K., Gonsalves, J. M., Clark, A. T., and Pera, R. A. (2006) Bone morphogenetic proteins induce germ cell dif–ferentiation from human embryonic stem cells, Stem Cells Dev., 15, 831–837.CrossRefGoogle Scholar
  50. 50.
    Hubner, K., Fuhrmann, G., Christenson, L. K., Kehler, J., Reinbold, R., De La Fuente, R., Wood, J., Strauss, J. F., 3rd, Boiani, M., and Scholer, H. R. (2003) Derivation of oocytes from mouse embryonic stem cells, Science, 300, 1251–1256.CrossRefGoogle Scholar
  51. 51.
    Geijsen, N., Horoschak, M., Kim, K., Gribnau, J., Eggan, K., Daley, G. Q., Change, G., and Jaarsveld, V. (2004) Derivation of embryonic germ cells and male gametes from embryonic stem cells, Nature, 427, 148–154.CrossRefGoogle Scholar
  52. 52.
    Park, T. S., Galic, Z., Conway, A. E., Lindgren, A., Van Handel, B. J., Magnusson, M., Richter, L., Teitell, M. A., Mikkola, H. K., Lowry, W. E., Plath, K., and Clark, A. T. (2009) Derivation of primordial germ cells from human embryonic and induced pluripotent stem cells is signifi–cantly improved by coculture with human fetal gonadal cells, Stem Cells, 27, 783–795.CrossRefGoogle Scholar
  53. 53.
    Panula, S., Medrano, J. V., Kee, K., Bergstrom, R., Nguyen, H. N., Byers, B., Wilson, K. D., Wu, J. C., Simon, C., Hovatta, O., and Reijo Pera, R. A. (2011) Human germ cell differentiation from fetal–and adult–derived induced pluripotent stem cells, Hum. Mol. Genet., 20, 752–762.CrossRefGoogle Scholar
  54. 54.
    Eguizabal, C., Montserrat, N., Vassena, R., Barragan, M., Garreta, E., Garcia–Quevedo, L., Vidal, F., Giorgetti, A., Veiga, A., and Izpisua Belmonte, J. C. (2011) Complete meiosis from human induced pluripotent stem cells, Stem Cells, 29, 1186–1195.CrossRefGoogle Scholar
  55. 55.
    Xie, L., Lin, L., Tang, Q., Li, W., Huang, T., Huo, X., Liu, X., Jiang, J., He, G., and Ma, L. (2015) Sertoli cell–medi–ated differentiation of male germ cell–like cells from human umbilical cord Wharton’s jelly–derived mesenchymal stem cells in an in vitro co–culture system, Eur. J. Med. Res., 20, 9.CrossRefGoogle Scholar
  56. 56.
    Fujimoto, T., Miyayama, Y., and Fuyuta, M. (1977) The origin, migration and fine morphology of human primor–dial germ cells, Anat. Rec., 188, 315–329.CrossRefGoogle Scholar
  57. 57.
    Funkuda, T. (1976) Ultrastructure of primordial germ cells in human embryo, Virchows Arch. B Cell Pathol., 20, 85–89.Google Scholar
  58. 58.
    Castrillon, D. H., Quade, B. J., Wang, T. Y., Quigley, C., and Crum, C. P. (2000) The human VASA gene is specifi–cally expressed in the germ cell lineage, Proc. Natl. Acad. Sci. USA, 97, 9585–9590.CrossRefGoogle Scholar
  59. 59.
    Eguizabal, C., Herrera, L., De Onate, L., Montserrat, N., Hajkova, P., and Izpisua Belmonte, J. C. (2016) Characterization of the epigenetic changes during human gonadal primordial germ cells reprogramming, Stem Cells, 34, 2418–2428.CrossRefGoogle Scholar
  60. 60.
    Kerr, C. L., Hill, C. M., Blumenthal, P. D., and Gearhart, J. D. (2008) Expression of pluripotent stem cell markers in the human fetal ovary, Hum. Reprod., 23, 589–599.CrossRefGoogle Scholar
  61. 61.
    Kerr, C. L., Hill, C. M., Blumenthal, P. D., and Gearhart, J. D. (2008) Expression of pluripotent stem cell markers in the human fetal testis, Stem Cells, 26, 412–421.CrossRefGoogle Scholar
  62. 62.
    Leng, L., Tan, Y., Gong, F., Hu, L., Ouyang, Q., Zhao, Y., Lu, G., and Lin, G. (2015) Differentiation of primordial germ cells from induced pluripotent stem cells of primary ovarian insufficiency, Hum. Reprod., 30, 737–748.CrossRefGoogle Scholar
  63. 63.
    Medrano, J. V., Ramathal, C., Nguyen, H. N., Simon, C., and Reijo Pera, R. A. (2012) Divergent RNA–binding pro–teins, DAZL and VASA, induce meiotic progression in human germ cells derived in vitro, Stem Cells, 30, 441–451.CrossRefGoogle Scholar
  64. 64.
    Zhao, Y., Ye, S., Liang, D., Wang, P., Fu, J., Ma, Q., Kong, R., Shi, L., Gong, X., Chen, W., Ding, W., Yang, W., Zhu, Z., Chen, H., Sun, X., Zhu, J., Li, Z., and Wang, Y. (2018) In vitro modeling of human germ cell development using pluripotent stem cells, Stem Cell Rep., 10, 509–523.CrossRefGoogle Scholar
  65. 65.
    Lin, I. Y., Chiu, F. L., Yeang, C. H., Chen, H. F., Chuang, C. Y., Yang, S. Y., Hou, P. S., Sintupisut, N., Ho, H. N., Kuo, H. C., and Lin, K. I. (2014) Suppression of the SOX2 neural effector gene by PRDM1 promotes human germ cell fate in embryonic stem cells, Stem Cell Rep., 2, 189–204.CrossRefGoogle Scholar
  66. 66.
    Hayashi, Y., Saitou, M., and Yamanaka, S. (2012) Germline development from human pluripotent stem cells toward disease modeling of infertility, Fertil. Steril., 97, 1250–1259.CrossRefGoogle Scholar
  67. 67.
    Angeles Julaton, V. T., and Reijo Pera, R. A. (2011) NANOS3 function in human germ cell development, Hum. Mol. Genet., 20, 2238–2250.CrossRefGoogle Scholar
  68. 68.
    Gkountela, S., Li, Z., Vincent, J. J., Zhang, K. X., Chen, A., Pellegrini, M., and Clark, A. T. (2013) The ontogeny of cKIT+ human primordial germ cells proves to be a resource for human germ line reprogramming, imprint erasure and in vitro differentiation, Nat. Cell Biol., 15, 113–122.CrossRefGoogle Scholar
  69. 69.
    Hackett, J. A., Zylicz, J. J., and Surani, M. A. (2012) Parallel mechanisms of epigenetic reprogramming in the germline, Trends Genet., 28, 164–174.CrossRefGoogle Scholar
  70. 70.
    Hara, K., Kanai–Azuma, M., Uemura, M., Shitara, H., Taya, C., Yonekawa, H., Kawakami, H., Tsunekawa, N., Kurohmaru, M., and Kanai, Y. (2009) Evidence for crucial role of hindgut expansion in directing proper migration of primordial germ cells in mouse early embryogenesis, Dev. Biol., 330, 427–439.CrossRefGoogle Scholar
  71. 71.
    Perrett, R. M., Turnpenny, L., Eckert, J. J., O’Shea, M., Sonne, S. B., Cameron, I. T., Wilson, D. I., Rajpert–De Meyts, E., and Hanley, N. A. (2008) The early human germ cell lineage does not express SOX2 during in vivo develop–ment or upon in vitro culture, Biol. Reprod., 78, 852–858.CrossRefGoogle Scholar
  72. 72.
    West, J. A., Viswanathan, S. R., Yabuuchi, A., Cunniff, K., Takeuchi, A., Park, I. H., Sero, J. E., Zhu, H., Perez–Atayde, A., Frazier, A. L., Surani, M. A., and Daley, G. Q. (2009) A role for Lin28 in primordial germ–cell develop–ment and germ–cell malignancy, Nature, 460, 909–913.CrossRefGoogle Scholar
  73. 73.
    Easley, C. A., Phillips, B. T., McGuire, M. M., Barringer, J. M., Valli, H., Hermann, B. P., Simerly, C. R., Rajkovic, A., Miki, T., Orwig, K. E., and Schatten, G. P. (2012) Direct differentiation of human pluripotent stem cells into haploid spermatogenic cells, Cell Rep., 2, 440–446.CrossRefGoogle Scholar
  74. 74.
    Gafni, O., Weinberger, L., Mansour, A. A., Manor, Y. S., Chomsky, E., Ben–Yosef, D., Kalma, Y., Viukov, S., Maza, I., Zviran, A., Rais, Y., Shipony, Z., Mukamel, Z., Krupalnik, V., Zerbib, M., Geula, S., Caspi, I., Schneir, D., Shwartz, T., Gilad, S., Amann–Zalcenstein, D., Benjamin, S., Amit, I., Tanay, A., Massarwa, R., Novershtern, N., and Hanna, J. H. (2013) Derivation of novel human ground state naive pluripotent stem cells, Nature, 504, 282–286.CrossRefGoogle Scholar
  75. 75.
    Kilens, S., Meistermann, D., Moreno, D., Chariau, C., Gaignerie, A., Reignier, A., Lelievre, Y., Casanova, M., Vallot, C., Nedellec, S., Flippe, L., Firmin, J., Song, J., Charpentier, E., Lammers, J., Donnart, A., Marec, N., Deb, W., Bihouee, A., Le Caignec, C., Pecqueur, C., Redon, R., Barriere, P., Bourdon, J., Pasque, V., Soumillon, M., Mikkelsen, T. S., Rougeulle, C., Freour, T., David, L., Abel, L., Alcover, A., Astrom, K., Bousso, P., Bruhns, P., Cumano, A., Duffy, D., Demangel, C., Deriano, L., DI Santo, J., Dromer, F., Eberl, G., Enninga, J., Fellay, J., Freitas, A., Gelpi, O., Gomperts–Boneca, I., Hercberg, S., Lantz, O., Leclerc, C., Mouquet, H., Patin, E., Pellegrini, S., Pol, S., Rogge, L., Sakuntabhai, A., Schwartz, O., Schwikowski, B., Shorte, S., Soumelis, V., Tangy, F., Tartour, E., Toubert, A., Ungeheuer, M. N., Quintana–Murci, L., and Albert, M. L. (2018) Parallel der–ivation of isogenic human primed and naive induced pluripotent stem cells, Nat. Commun., 9, 1–13.CrossRefGoogle Scholar
  76. 76.
    Theunissen, T. W., Friedli, M., He, Y., Planet, E., O’Neil, R. C., Markoulaki, S., Pontis, J., Wang, H., Iouranova, A., Imbeault, M., Duc, J., Cohen, M. A., Wert, K. J., Castanon, R., Zhang, Z., Huang, Y., Nery, J. R., Drotar, J., Lungjangwa, T., Trono, D., Ecker, J. R., and Jaenisch, R. (2016) Molecular criteria for defining the naive human pluripotent state, Cell Stem Cell, 19, 502–515.CrossRefGoogle Scholar
  77. 77.
    Ware, C. B., Nelson, A. M., Mecham, B., Hesson, J., Zhou, W., Jonlin, E. C., Jimenez–Caliani, A. J., Deng, X., Cavanaugh, C., Cook, S., Tesar, P. J., Okada, J., Margaretha, L., Sperber, H., Choi, M., Blau, C. A., Treuting, P. M., Hawkins, R. D., Cirulli, V., and Ruohola–Baker, H. (2014) Derivation of naive human embryonic stem cells, Proc. Natl. Acad. Sci. USA, 111, 4484–4489.CrossRefGoogle Scholar
  78. 78.
    Watanabe, K., Ueno, M., Kamiya, D., Nishiyama, A., Matsumura, M., Wataya, T., Takahashi, J. B., Nishikawa, S., Nishikawa, S. I., Muguruma, K., and Sasai, Y. (2007) A ROCK inhibitor permits survival of dissociated human embryonic stem cells, Nat. Biotechnol., 25, 681–686.CrossRefGoogle Scholar
  79. 79.
    Chuang, C. Y., Lin, K. I., Hsiao, M., Stone, L., Chen, H. F., Huang, Y. H., Lin, S. P., Ho, N. N., and Kuo, H. C. (2012) Meiotic competent human germ cell–like cells derived from human embryonic stem cells induced by BMP4/WNT3A signaling and OCT4/EpCAM (epithelial cell adhesion molecule) selection, J. Biol. Chem., 287, 14389–14401.CrossRefGoogle Scholar
  80. 80.
    Sugawa, F., Arauzo–Bravo, M. J., Yoon, J., Kim, K.–P., Aramaki, S., Wu, G., Stehling, M., Psathaki, O. E., Hubner, K., and Scholer, H. R. (2015) Human primordial germ cell commitment in vitro associates with a unique PRDM14 expression profile, EMBO J., 34, 1009–1024.CrossRefGoogle Scholar
  81. 81.
    Bernardo, A. S., Faial, T., Gardner, L., Niakan, K. K., Ortmann, D., Senner, C. E., Callery, E. M., Trotter, M. W., Hemberger, M., Smith, J. C., Bardwell, L., Moffett, A., and Pedersen, R. A. (2011) BRACHYURY and CDX2 mediate BMP–induced differentiation of human and mouse pluripotent stem cells into embryonic and extraem–bryonic lineages, Cell Stem Cell, 9, 144–155.CrossRefGoogle Scholar
  82. 82.
    Aramaki, S., Hayashi, K., Kurimoto, K., Ohta, H., Yabuta, Y., Iwanari, H., Mochizuki, Y., Hamakubo, T., Kato, Y., Shirahige, K., and Saitou, M. (2013) A mesodermal factor, T, specifies mouse germ cell fate by directly activating germline determinants, Dev. Cell, 27, 516–529.CrossRefGoogle Scholar
  83. 83.
    Sasaki, K., Yokobayashi, S., Nakamura, T., Okamoto, I., Yabuta, Y., Kurimoto, K., Ohta, H., Moritoki, Y., Iwatani, C., Tsuchiya, H., Nakamura, S., Sekiguchi, K., Sakuma, T., Yamamoto, T., Mori, T., Woltjen, K., Nakagawa, M., Yamamoto, T., Takahashi, K., Yamanaka, S., and Saitou, M. (2015) Robust in vitro induction of human germ cell fate from pluripotent stem cells, Cell Stem Cell, 17, 178–194.CrossRefGoogle Scholar
  84. 84.
    Saitou, M., Barton, S. C., and Surani, M. A. (2002) A molecular programme for the specification of germ cell fate in mice, Nature, 418, 293–300.CrossRefGoogle Scholar
  85. 85.
    Yamaji, M., Ueda, J., Hayashi, K., Ohta, H., Yabuta, Y., Kurimoto, K., Nakato, R., Yamada, Y., Shirahige, K., and Saitou, M. (2013) PRDM14 ensures naive pluripotency through dual regulation of signaling and epigenetic pathways in mouse embryonic stem cells, Cell Stem Cell, 12, 368–382.CrossRefGoogle Scholar
  86. 86.
    Chen, D., Gell, J. J., Tao, Y., Sosa, E., and Clark, A. T. (2017) Modeling human infertility with pluripotent stem cells, Stem Cell Res., 21, 187–192.CrossRefGoogle Scholar
  87. 87.
    Singh, K., and Jaiswal, D. (2011) Human male infertility: a complex multifactorial phenotype, Reprod. Sci., 18, 418–425.CrossRefGoogle Scholar
  88. 88.
    Bowles, J. (2006) Retinoid signaling determines germ cell fate in mice, Science, 312, 596–600.CrossRefGoogle Scholar
  89. 89.
    MacLean, G., Li, H., Metzger, D., Chambon, P., and Petkovich, M. (2007) Apoptotic extinction of germ cells in testes of Cyp26b1 knockout mice, Endocrinology, 148, 4560–4567.CrossRefGoogle Scholar
  90. 90.
    Abrao, M. S., Muzii, L., and Marana, R. (2013) Anatomical causes of female infertility and their manage–ment, Int. J. Gynecol. Obstet., 123, Suppl. 2, S18–S24.Google Scholar
  91. 91.
    Anawalt, B. D. (2013) Approach to male infertility and induction of spermatogenesis, J. Clin. Endocrinol. Metab., 98, 3532–3542.CrossRefGoogle Scholar
  92. 92.
    Rieger, D. (2012) Culture systems: physiological and envi–ronmental factors that can affect the outcome of human ART, Methods Mol. Biol., 912, 333–354.Google Scholar
  93. 93.
    Sharpe, R. M. (2010) Environmental/lifestyle effects on spermatogenesis, Philos. Trans. R Soc. Lond B Biol. Sci., 365, 1697–1712.CrossRefGoogle Scholar
  94. 94.
    Handel, M. A., Eppig, J. J., and Schimenti, J. C. (2014) Applying “gold standards” to in vitro–derived germ cells, Cell, 157, 1257–1261.CrossRefGoogle Scholar
  95. 95.
    Bourillot, P. Y., Aksoy, I., Schreiber, V., Wianny, F., Schulz, H., Hummel, O., Hubner, N., and Savatier, P. (2009) Novel STAT3 target genes exert distinct roles in the inhibition of mesoderm and entoderm differentiation in cooperation with Nanog, Stem Cells, 27, 1760–1771.CrossRefGoogle Scholar
  96. 96.
    Daheron, L., Opitz, S. L., Zaehres, H., Lensch, W. M., Andrews, P. W., Itskovitz–Eldor, J., and Daley, G. Q. (2004) LIF/STAT3 signaling fails to maintain self–renewal of human embryonic stem cells, Stem Cells, 22, 770–778.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • V. K. Abdyyev
    • 1
    Email author
  • E. B. Dashinimayev
    • 2
    • 3
  • I. V. Neklyudova
    • 1
  • E. A. Vorotelyak
    • 1
    • 2
    • 3
  • A. V. Vasiliev
    • 1
    • 2
  1. 1.Lomonosov Moscow State UniversityFaculty of BiologyMoscowRussia
  2. 2.Koltzov Institute of Developmental BiologyRussian Academy of SciencesMoscowRussia
  3. 3.Pirogov Russian Research Medical UniversityMoscowRussia

Personalised recommendations