Advertisement

Biochemistry (Moscow)

, Volume 84, Issue 3, pp 205–219 | Cite as

KH-Domain Poly(C)-Binding Proteins as Versatile Regulators of Multiple Biological Processes

  • I. B. NazarovEmail author
  • E. I. Bakhmet
  • A. N. Tomilin
Review
  • 13 Downloads

Abstract

Five known members of the family of KH-domain poly(C)-binding proteins (Pcbp1-4, hnRNP-K) have an unusually broad spectrum of cellular functions that include regulation of gene transcription, regulation of pre-mRNA processing, splicing, mRNA stability, translational silencing and enhancement, the control of iron turnover, and many others. Mechanistically, these proteins act via nucleic acid binding and protein–protein interactions. Through performing these multiple tasks, the KH-domain poly(C)-binding family members are involved in a wide variety of biological processes such as embryonic development, cell differentiation, and cancer. Deregulation of KH-domain protein expression is frequently associated with severe developmental defects and neoplasia. This review summarizes progress in studies of the KH-domain proteins made over past two decades. The review also reports our recent finding implying an involvement of the KH-factor Pcbp1 into control of transition from naive to primed pluripotency cell state.

Keywords

Pcbp1-4 hnRNP-K gene expression cell cycle cancer embryonic development pluripotent stem cells 

Abbreviations

CD43

cluster of differentiation 43

CD44

CD44-antigen

CDC27

cell division cycle 27

CDK2

cyclin dependent kinase 2

ChIP

chromatin immunoprecipitation

CRISPR/Cas9

genome editing technology

DICE

differentiation control element

EMT

epithelial–mesenchymal transition

ESCs

embryonic stem cells

GPR56

G-protein-associated receptor

HIF1α

hypoxia inducible factor α

hnRNP K

heterogenous nuclear ribonucleoprotein K

IRES

internal ribosome entry site

KH-proteins (or KH-domain proteins)

KH-domain poly(C)-binding proteins

miR

microRNA

MOR

μ-opioid receptor

p21

cyclin-dependent kinase inhibitor 1A (CDKN1A)

p53

tumor antigen p53

Pcbp1

Pcbp2, Pcbp3, Pcbp4, Poly(C)-binding proteins 1,2,3,4

PLK1

polo-like kinase 1

POLH

DNA polymerase η

PRF

programmed ribosomal frameshifting

PU.1

hematopoietic transcription factor PU.1

siRNA

small interfering RNA

snRNP

small nuclear ribonuclear protein

THAP11

THAP domain containing protein

UTR

untranslated region

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Siomi, H., Matunis, M. J., Michael, W. M., and Dreyfuss, G. (1993) The pre–mRNA binding K protein contains a novel evolutionarily conserved motif, Nucleic Acids Res., 21, 1193–1198.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Valverde, R., Edwards, L., and Regan, L. (2008) Structure and function of KH domains, FEBS J., 275, 2712–2726.CrossRefPubMedGoogle Scholar
  3. 3.
    Choi, H. S., Hwang, C. K., Song, K. Y., Law, P. Y., Wei, L. N., and Loh, H. H. (2009) Poly(C)–binding proteins as transcriptional regulators of gene expression, Biochem. Biophys. Res. Commun., 380, 431–436.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Gallardo, M., Hornbaker, M. J., Zhang, X., Hu, P., Bueso–Ramos, C., and Post, S. M. (2016) Aberrant hnRNP K expression: all roads lead to cancer, Cell Cycle, 15, 1552–1557.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Geuens, T., Bouhy, D., and Timmerman, V. (2016) The hnRNP family: insights into their role in health and dis–ease, Hum. Genet., 135, 851–867.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Makeyev, A. V., and Liebhaber, S. A. (2002) The poly(C)–binding proteins: a multiplicity of functions and a search for mechanisms, RNA, 8, 265–278.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Philpott, C. C., Ryu, M. S., Frey, A., and Patel, S. (2017) Cytosolic iron chaperones: proteins delivering iron cofac–tors in the cytosol of mammalian cells, J. Biol. Chem., 292, 12764–12771.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Michelotti, G. A., Michelotti, E. F., Pullner, A., Duncan, R. C., Eick, D., and Levens, D. (1996) Multiple single–stranded cis–elements are associated with activated chro–matin of the human c–myc gene in vivo, Mol. Cell. Biol., 16, 2656–2669.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Ostrowski, J., Kawata, Y., Schullery, D. S., Denisenko, O. N., and Bomsztyk, K. (2003) Transient recruitment of the hnRNP K protein to inducibly transcribed gene loci, Nucleic Acids Res., 31, 3954–3962.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Choi, H. S., Song, K. Y., Hwang, C. K., Kim, C. S., Law, P. Y., Wei, L. N., and Loh, H. H. (2008) A proteomics approach for identification of single strand DNA–binding proteins involved in transcriptional regulation of mouse mu opioid receptor gene, Mol. Cell. Proteom., 7, 1517–1529.CrossRefGoogle Scholar
  11. 11.
    Kim, S. S., Pandey, K. K., Choi, H. S., Kim, S. Y., Law, P. Y., Wei, L. N., and Loh, H. H. (2005) Poly(C)–binding protein family is a transcription factor in mu–opioid receptor gene expression, Mol. Pharmacol., 68, 729–736.PubMedGoogle Scholar
  12. 12.
    Rivera–Gines, A., Cook, R. J., Loh, H. H., and Ko, J. L. (2006) Interplay of Sps and poly(C)–binding protein 1 on the mu–opioid receptor gene expression, Biochem. Biophys. Res. Commun., 345, 530–537.CrossRefPubMedGoogle Scholar
  13. 13.
    Choi, H. S., Kim, C. S., Hwang, C. K., Song, K. Y., Law, P. Y., Wei, L. N., and Loh, H. H. (2007) Novel function of the poly(C)–binding protein alpha CP3 as a transcriptional repressor of the mu opioid receptor gene, FASEB J., 21, 3963–3973.CrossRefPubMedGoogle Scholar
  14. 14.
    Du, K., Melnikova, I. N., and Gardner, P. D. (1998) Differential effects of heterogeneous nuclear ribonucleo–protein K on Sp1–and Sp3–mediated transcriptional acti–vation of a neuronal nicotinic acetylcholine receptor pro–moter, J. Biol. Chem., 273, 19877–19883.CrossRefPubMedGoogle Scholar
  15. 15.
    Ritchie, S. A., Pasha, M. K., Batten, D. J. P., Sharma, R. K., Olson, D. J. H., Ross, A. R. S., and Bonham, K. (2003) Identification of the SRC pyrimidine–binding protein (SPy) as hnRNP K: implications in the regulation of SRC1A transcription, Nucleic Acids Res., 31, 1502–1513.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Thakur, S., Nakamura, T., Calin, G., Russo, A., Tamburrino, J. F., Shimizu, M., Baldassarre, G., Battista, S., Fusco, A., Wassell, R. P., Dubois, G., Alder, H., and Croce, C. M. (2003) Regulation of BRCA1 transcription by specific single–stranded DNA binding factors, Mol. Cell. Biol., 23, 3774–3787.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Lynch, M., Chen, L., Ravitz, M. J., Mehtani, S., Korenblat, K., Pazin, M. J., and Schmidt, E. V. (2005) hnRNP K binds a core polypyrimidine element in the eukaryotic translation initiation factor 4E (eIF4E) promot–er, and its regulation of eIF4E contributes to neoplastic transformation, Mol. Cell. Biol., 25, 6436–6453.Google Scholar
  18. 18.
    Da Silva, N., Bharti, A., and Shelley, C. S. (2002) hnRNP–K and Pur(alpha) act together to repress the transcription–al activity of the CD43 gene promoter, Blood, 100, 3536–3544.CrossRefPubMedGoogle Scholar
  19. 19.
    Lau, J. S., Baumeister, P., Kim, E., Roy, B., Hsieh, T. Y., Lai, M., and Lee, A. S. (2000) Heterogeneous nuclear ribonucleoproteins as regulators of gene expression through interactions with the human thymidine kinase promoter, J. Cell Biochem., 79, 395–406.CrossRefPubMedGoogle Scholar
  20. 20.
    Moumen, A., Magill, C., Dry, K. L., and Jackson, S. P. (2013) ATM–dependent phosphorylation of heterogeneous nuclear ribonucleoprotein K promotes p53 transcriptional activation in response to DNA damage, Cell Cycle, 12, 698–704.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Kaiser, C. E., Van Ert, N. A., Agrawal, P., Chawla, R., Yang, D., and Hurley, L. H. (2017) Insight into the com–plexity of the i–motif and G–quadruplex DNA structures formed in the KRAS promoter and subsequent drug–induced gene repression, J. Am. Chem. Soc., 139, 8522–8536.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Banerjee, K., Wang, M., Cai, E., Fujiwara, N., Baker, H., and Cave, J. W. (2014) Regulation of tyrosine hydroxylase transcription by hnRNP K and DNA secondary structure, Nat. Commun., 5, 5769.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    He, Q., Zeng, P., Tan, J. H., Ou, T. M., Gu, L. Q., Huang, Z. S., and Li, D. (2014) G–quadruplex–mediated regulation of telomere binding protein POT1 gene expression, Biochim. Biophys. Acta, 1840, 2222–2233.CrossRefPubMedGoogle Scholar
  24. 24.
    Saradhi, M., Kumari, S., Rana, M., Mukhopadhyay, G., and Tyagi, R. K. (2015) Identification and interplay of sequence specific DNA binding proteins involved in regu–lation of human Pregnane and Xenobiotic Receptor gene, Exp. Cell Res., 339, 187–196.CrossRefPubMedGoogle Scholar
  25. 25.
    Uribe, D. J., Guo, K., Shin, Y. J., and Sun, D. (2011) Heterogeneous nuclear ribonucleoprotein K and nucleolin as transcriptional activators of the vascular endothelial growth factor promoter through interaction with secondary DNA structures, Biochemistry, 50, 3796–3806.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Ghosh, A., Abdo, S., Zhao, S., Wu, C. H., Shi, Y., Lo, C. S., Chenier, I., Alquier, T., Filep, J. G., Ingelfinger, J. R., Zhang, S. L., and Chan, J. S. D. (2017) Insulin inhibits Nrf2 gene expression via heterogeneous nuclear ribonucle–oprotein F/K in diabetic mice, Endocrinology, 158, 903–919.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Sutherland, C., Cui, Y., Mao, H., and Hurley, L. H. (2016) A mechanosensor mechanism controls the G–quadru–plex/i–motif molecular switch in the MYC promoter NHE III1, J. Am. Chem. Soc., 138, 14138–14151, doi: 10.1021/jacs.6b09196.CrossRefPubMedGoogle Scholar
  28. 28.
    Nazarov, I. B., Krasnoborova, V. A., Mitenberg, A. G., Chikhirzhina, E. V., Davidov–Sinitzin, A. P., Liskovykh, M. A., and Tomilin, A. N. (2014) Transcription regulation of Oct4 (Pou5F1) gene by its distal enhancer, Cell Tiss. Biol., 8, 27–32.CrossRefGoogle Scholar
  29. 29.
    Ji, X., Park, J. W., Bahrami–Samani, E., Lin, L., Duncan–Lewis, C., Pherribo, G., Xing, Y., and Liebhaber, S. A. (2016) αCP binding to a cytosine–rich subset of polypyrim–idine tracts drives a novel pathway of cassette exon splicing in the mammalian transcriptome, Nucleic Acids Res., 44, 2283–2297.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Akker, S. A., Misra, S., Aslam, S., Morgan, E. L., Smith, P. J., Khoo, B., and Chew, S. L. (2007) Pre–spliceosomal binding of U1 small nuclear ribonucleoprotein (RNP) and heterogenous nuclear RNP E1 is associated with suppres–sion of a growth hormone receptor pseudoexon, Mol. Endocrinol., 21, 2529–2540.CrossRefPubMedGoogle Scholar
  31. 31.
    Meng, Q., Rayala, S. K., Gururaj, A. E., Talukder, A. H., O’Malley, B. W., and Kumar, R. (2007) Signaling–depend–ent and coordinated regulation of transcription, splicing, and translation resides in a single coregulator, PCBP1, Proc. Natl. Acad. Sci. USA, 104, 5866–5871.CrossRefPubMedGoogle Scholar
  32. 32.
    Zhang, T., Huang, X. H., Dong, L., Hu, D., Ge, C., Zhan, Y. Q., Xu, W. X., Yu, M., Li, W., Wang, X., Tang, L., Li, C. Y., and Yang, X. M. (2010) PCBP–1 regulates alternative splicing of the CD44 gene and inhibits invasion in human hepatoma cell line HepG2 cells, Mol. Cancer, 9, 72.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Lian, W. X., Yin, R. H., Kong, X. Z., Zhang, T., Huang, X. H., Zheng, W. W., Yang, Y., Zhan, Y. Q., Xu, W. X., Yu, M., Ge, C. H., Guo, J. T., Li, C. Y., and Yang, X. M. (2012) THAP11, a novel binding protein of PCBP1, negatively regulates CD44 alternative splicing and cell invasion in a human hepatoma cell line, FEBS Lett., 586, 1431–1438.Google Scholar
  34. 34.
    Bomsztyk, K., Denisenko, O., and Ostrowski, J. (2004) hnRNP K: one protein multiple processes, BioEssays, 26, 629–638.PubMedGoogle Scholar
  35. 35.
    Mikula, M., Dzwonek, A., Karczmarski, J., Rubel, T., Dadlez, M., Wyrwicz, L. S., Bomsztyk, K., and Ostrowski, J. (2006) Landscape of the hnRNP K protein–protein interactome, Proteomics, 6, 2395–2406.CrossRefPubMedGoogle Scholar
  36. 36.
    Expert–Bezancon, A., Le Caer, J. P., and Marie, J. (2002) Heterogeneous nuclear ribonucleoprotein (hnRNP) K is a component of an intronic splicing enhancer complex that activates the splicing of the alternative exon 6A from chick–en beta–tropomyosin pre–mRNA, J. Biol. Chem., 277, 16614–16623.CrossRefPubMedGoogle Scholar
  37. 37.
    Cao, W., Razanau, A., Feng, D., Lobo, V. G., and Xie, J. (2012) Control of alternative splicing by forskolin through hnRNP K during neuronal differentiation, Nucleic Acids Res., 40, 8059–8071.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Venables, J. P., Koh, C. S., Froehlich, U., Lapointe, E., Couture, S., Inkel, L., Bramard, A., Paquet, E. R., Watier, V., Durand, M., Lucier, J. F., Gervais–Bird, J., Tremblay, K., Prinos, P., Klinck, R., Elela, S. A., and Chabot, B. (2008) Multiple and specific mRNA processing targets for the major human hnRNP proteins, Mol. Cell. Biol., 28, 6033–6043.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Weiss, I. M., and Liebhaber, S. A. (1995) Erythroid cell–specific mRNA stability elements in the alpha 2–globin 3′ untranslated region, Mol. Cell. Biol., 15, 2457–2465.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Wang, X., Kiledjian, M., Weiss, I. M., and Liebhaber, S. A. (1995) Detection and characterization of a 3′ untranslated region ribonucleoprotein complex associated with human alpha–globin mRNA stability, Mol. Cell. Biol., 15, 1769–1777.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Ren, C., Cho, S. J., Jung, Y. S., and Chen, X. (2014) DNA polymerase eta is regulated by poly(rC)–binding protein 1 via mRNA stability, Biochem. J., 464, 377–386.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Hwang, C. K., Wagley, Y., Law, P. Y., Wei, L. N., and Loh, H. H. (2017) Phosphorylation of poly(rC)–binding protein 1 (PCBP1) contributes to stabilization of mu opioid recep–tor (MOR) mRNA via interaction with AU–rich element RNA–binding protein 1 (AUF1) and poly(A)–binding pro–tein (PABP), Gene, 598, 113–130.CrossRefPubMedGoogle Scholar
  43. 43.
    Song, K. Y., Choi, H. S., Law, P. Y., Wei, L. N., and Loh, H. H. (2017) Post–transcriptional regulation of the human Mu–Opioid Receptor (MOR) by morphine–induced RNA binding proteins hnRNP K and PCBP1, J. Cell Physiol., 232, 576–584.CrossRefPubMedGoogle Scholar
  44. 44.
    Shi, H., Li, H., Yuan, R., Guan, W., Zhang, X., Zhang, S., Zhang, W., Tong, F., Li, L., Song, Z., Wang, C., Yang, S., and Wang, H. (2018) PCBP1 depletion promotes tumorige–nesis through attenuation of p27(Kip1) mRNA stability and translation, J. Exp. Clin. Cancer Res., 37, 187.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Vidaki, M., Drees, F., Saxena, T., Lanslots, E., Taliaferro, M. J., Tatarakis, A., Burge, C. B., Wang, E. T., and Gertler, F. B. (2017) A requirement for mena, an actin regulator, in local mRNA translation in developing neurons, Neuron, 95, 608–622.e5.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Lee, S. J., Oses–Prieto, J. A., Kawaguchi, R., Sahoo, P. K., Kar, A. N., Rozenbaum, M., Oliver, D., Chand, S., Ji, H., Shtutman, M., Miller–Randolph, S., Taylor, R. J., Fainzilber, M., Coppola, G., Burlingame, A. L., and Twiss, J. L. (2018) hnRNPs interacting with mRNA localization motifs define axonal RNA regulons, Mol. Cell. Proteom., 11, 2091–2106.CrossRefGoogle Scholar
  47. 47.
    Leal, G., Comprido, D., de Luca, P., Morais, E., Rodrigues, L., Mele, M., Santos, A. R., Costa, R. O., Pinto, M. J., Patil, S., Berentsen, B., Afonso, P., Carreto, L., Li, K. W., Pinheiro, P., Almeida, R. D., Santos, M. A. S., Bramham, C. R., and Duarte, C. B. (2017) The RNA–binding protein hnRNP K mediates the effect of BDNF on dendritic mRNA metabolism and regu–lates synaptic NMDA receptors in hippocampal neurons, eNeuro, 4, doi: 10.1523/ENEURO.0268–17.2017.Google Scholar
  48. 48.
    Chakraborty, A., Mukherjee, S., Saha, S., De, S., and Sengupta Bandyopadhyay, S. (2017) Phorbol–12–myristate–13–acetate–mediated stabilization of leukemia inhibitory factor (LIF) mRNA: involvement of nucleolin and PCBP1, Biochem. J., 474, 2349–2363.CrossRefPubMedGoogle Scholar
  49. 49.
    Tang, Y.–S., Khan, R. A., Xiao, S., Hansen, D. K., Stabler, S. P., Kusumanchi, P., Jayaram, H. N., and Antony, A. C. (2017) Evidence favoring a positive feedback loop for phys–iologic auto upregulation of hnRNP–E1 during prolonged folate deficiency in human placental cells, J. Nutrition, 147, 482–498.CrossRefGoogle Scholar
  50. 50.
    Zhang, Y., Si, Y., Ma, N., and Mei, J. (2015) The RNA–binding protein PCBP2 inhibits Ang II–induced hypertro–phy of cardiomyocytes though promoting GPR56 mRNA degeneration, Biochem. Biophys. Res. Commun., 464, 679–684.CrossRefPubMedGoogle Scholar
  51. 51.
    Holcik, M., and Liebhaber, S. A. (1997) Four highly stable eukaryotic mRNAs assemble 3′ untranslated region RNA–protein complexes sharing cis and trans compo–nents, Proc. Natl. Acad. Sci. USA, 94, 2410–2414.CrossRefPubMedGoogle Scholar
  52. 52.
    Ostareck, D. H., Ostareck–Lederer, A., Wilm, M., Thiele, B. J., Mann, M., and Hentze, M. W. (1997) mRNA silenc–ing in erythroid differentiation: hnRNP K and hnRNP E1 regulate 15–lipoxygenase translation from the 3′ end, Cell, 89, 597–606.CrossRefPubMedGoogle Scholar
  53. 53.
    Ostareck, D. H., Ostareck–Lederer, A., Shatsky, I. N., and Hentze, M. W. (2001) Lipoxygenase mRNA silencing in erythroid differentiation: the 3′UTR regulatory complex controls 60S ribosomal subunit joining, Cell, 104, 281–290.CrossRefPubMedGoogle Scholar
  54. 54.
    Collier, B., Goobar–Larsson, L., Sokolowski, M., and Schwartz, S. (1998) Translational inhibition in vitro of human papillomavirus type 16L2 mRNA mediated through interaction with heterogenous ribonucleoprotein K and poly(rC)–binding proteins 1 and 2, J. Biol. Chem., 273, 22648–22656.CrossRefPubMedGoogle Scholar
  55. 55.
    Chaudhury, A., Hussey, G. S., Ray, P. S., Jin, G., Fox, P. L., and Howe, P. H. (2010) TGF–beta–mediated phosphoryla–tion of hnRNP E1 induces EMT via transcript–selective translational induction of Dab2 and ILEI, Nat. Cell Biol., 12, 286–293.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Evans, J. R., Mitchell, S. A., Spriggs, K. A., Ostrowski, J., Bomsztyk, K., Ostarek, D., and Willis, A. E. (2003) Members of the poly(rC)–binding protein family stimulate the activity of the c–myc internal ribosome entry segment in vitro and in vivo, Oncogene, 22, 8012–8020.CrossRefPubMedGoogle Scholar
  57. 57.
    Blyn, L. B., Towner, J. S., Semler, B. L., and Ehrenfeld, E. (1997) Requirement of poly(rC)–binding protein 2 for translation of poliovirus RNA, J. Virol., 71, 6243–6246.PubMedPubMedCentralGoogle Scholar
  58. 58.
    Ogram, S. A., Spear, A., Sharma, N., and Flanegan, J. B. (2010) The 5′CL–PCBP RNP complex, 3′ poly(A) tail and 2A(pro) are required for optimal translation of poliovirus RNA, Virology, 397, 14–22.CrossRefPubMedGoogle Scholar
  59. 59.
    Gamarnik, A. V., and Andino, R. (1997) Two functional complexes formed by KH–domain containing proteins with the 5′ noncoding region of poliovirus RNA, RNA, 3, 882–892.PubMedPubMedCentralGoogle Scholar
  60. 60.
    Pickering, B. M., Mitchell, S. A., Evans, J. R., and Willis, A. E. (2003) Polypyrimidine tract binding protein and poly(rC)–binding protein 1 interact with the BAG–1IRES and stimulate its activity in vitro and in vivo, Nucleic Acids Res., 31, 639–646.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Napthine, S., Treffers, E. E., Bell, S., Goodfellow, I., Fang, Y., Firth, A. E., Snijder, E. J., and Brierley, I. (2016) A novel role for poly(C)–binding proteins in programmed ribosomal frameshifting, Nucleic Acids Res., 44, 5491–5503.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Bogdan, A. R., Miyazawa, M., Hashimoto, K., and Tsuji, Y. (2016) Regulators of iron homeostasis: new players in metabolism, cell death, and disease, Trends Biochem. Sci., 41, 274–286.CrossRefPubMedGoogle Scholar
  63. 63.
    Dixon, S. J., and Stockwell, B. R. (2014) The role of iron and reactive oxygen species in cell death, Nat. Chem. Biol., 10, 9–17.CrossRefPubMedGoogle Scholar
  64. 64.
    Torti, S. V., and Torti, F. M. (2013) Iron and cancer: more ore to be mined, Nat. Rev. Cancer, 13, 342–355.CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Nandal, A., Ruiz, J. C., Subramanian, P., Ghimire–Rijal, S., Sinnamon, R. A., Stemmler, T. L., Bruick, R. K., and Philpott, C. C. (2011) Activation of the HIF prolyl hydrox–ylase by the iron chaperones PCBP1 and PCBP2, Cell Metab., 14, 647–657.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Frey, A. G., Nandal, A., Park, J. H., Smith, P. M., Yabe, T., Ryu, M. S., Ghosh, M. C., Lee, J., Rouault, T. A., Park, M. H., and Philpott, C. C. (2014) Iron chaperones PCBP1 and PCBP2 mediate the metallation of the dinuclear iron enzyme deoxyhypusine hydroxylase, Proc. Natl. Acad. Sci. USA, 111, 8031–8036.CrossRefPubMedGoogle Scholar
  67. 67.
    Yanatori, I., Richardson, D. R., Toyokuni, S., and Kishi, F. (2017) The iron chaperone poly(rC)–binding protein 2 forms a metabolon with the heme oxygenase 1/cytochrome P450 reductase complex for heme catabolism and iron transfer, J. Biol. Chem., 292, 13205–13229.CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Wang, Z., Yin, W., Zhu, L., Li, J., Yao, Y., Chen, F., Sun, M., Zhang, J., Shen, N., Song, Y., and Chang, X. (2018) Iron drives T helper cell pathogenicity by promoting RNA–binding protein PCBP1–mediated proinflammatory cytokine production, Immunity, 49, 80–92 e87, doi: 10.1016/j.immuni.2018.05.008.CrossRefPubMedGoogle Scholar
  69. 69.
    Yanatori, I., Yasui, Y., Tabuchi, M., and Kishi, F. (2014) Chaperone protein involved in transmembrane transport of iron, Biochem. J., 462, 25–37.CrossRefPubMedGoogle Scholar
  70. 70.
    Yanatori, I., Richardson, D. R., Imada, K., and Kishi, F. (2016) Iron export through the transporter ferroportin 1 is modulated by the iron chaperone PCBP2, J. Biol. Chem., 291, 17303–17318.CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Mikula, M., Bomsztyk, K., Goryca, K., Chojnowski, K., and Ostrowski, J. (2013) Heterogeneous nuclear ribonucle–oprotein (HnRNP) K genome–wide binding survey reveals its role in regulating 3′–end RNA processing and transcrip–tion termination at the early growth response 1 (EGR1) gene through XRN2 exonuclease, J. Biol. Chem., 288, 24788–24798.CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Pintacuda, G., Wei, G., Roustan, C., Kirmizitas, B. A., Solcan, N., Cerase, A., Castello, A., Mohammed, S., Moindrot, B., Nesterova, T. B., and Brockdorff, N. (2017) hnRNPK recruits PCGF3/5–PRC1 to the Xist RNA B–repeat to establish Polycomb–mediated chromosomal silencing, Mol. Cell, 68, 955–969 e910, doi: 10.1016/j.molcel.2017.11.013.Google Scholar
  73. 73.
    Ishii, T., Hayakawa, H., Igawa, T., Sekiguchi, T., and Sekiguchi, M. (2018) Specific binding of PCBP1 to heavi–ly oxidized RNA to induce cell death, Proc. Natl. Acad. Sci. USA, 115, 6715–6720.CrossRefPubMedGoogle Scholar
  74. 74.
    Carpenter, B., McKay, M., Dundas, S. R., Lawrie, L. C., Telfer, C., and Murray, G. I. (2006) Heterogeneous nuclear ribonucleoprotein K is over expressed, aberrantly localised and is associated with poor prognosis in colorectal cancer, Br. J. Cancer, 95, 921–927.CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Chen, L. C., Chung, I. C., Hsueh, C., Tsang, N. M., Chi, L. M., Liang, Y., Chen, C. C., Wang, L. J., and Chang, Y. S. (2010) The antiapoptotic protein, FLIP, is regulated by heterogeneous nuclear ribonucleoprotein K and correlates with poor overall survival of nasopha–ryngeal carcinoma patients, Cell Death Differ., 17, 1463–1473.CrossRefPubMedGoogle Scholar
  76. 76.
    Ciarlo, M., Benelli, R., Barbieri, O., Minghelli, S., Barboro, P., Balbi, C., and Ferrari, N. (2012) Regulation of neuroendocrine differentiation by AKT/hnRNPK/AR/beta–catenin signaling in prostate cancer cells, Int. J. Cancer, 131, 582–590.CrossRefPubMedGoogle Scholar
  77. 77.
    Wen, F., Shen, A., Shanas, R., Bhattacharyya, A., Lian, F., Hostetter, G., and Shi, J. (2010) Higher expression of the heterogeneous nuclear ribonucleoprotein K in melanoma, Annal. Surg. Oncol., 17, 2619–2627.CrossRefGoogle Scholar
  78. 78.
    Wu, C. S., Chang, K. P., Chen, L. C., Chen, C. C., Liang, Y., Hseuh, C., and Chang, Y. S. (2012) Hetero–geneous ribonucleoprotein K and thymidine phosphorylase are independent prognostic and therapeutic markers for oral squamous cell carcinoma, Oral Oncol., 48, 516–522.CrossRefPubMedGoogle Scholar
  79. 79.
    Chen, X., Gu, P., Xie, R., Han, J., Liu, H., Wang, B., Xie, W., Xie, W., Zhong, G., Chen, C., Xie, S., Jiang, N., Lin, T., and Huang, J. (2017) Heterogeneous nuclear ribonucle–oprotein K is associated with poor prognosis and regulates proliferation and apoptosis in bladder cancer, J. Cell. Mol. Med., 21, 1266–1279.CrossRefPubMedGoogle Scholar
  80. 80.
    Kawasaki, Y., Komiya, M., Matsumura, K., Negishi, L., Suda, S., Okuno, M., Yokota, N., Osada, T., Nagashima, T., Hiyoshi, M., Okada–Hatakeyama, M., Kitayama, J., Shirahige, K., and Akiyama, T. (2016) MYU, a target lncRNA for Wnt/c–Myc signaling, mediates induction of CDK6 to promote cell cycle progression, Cell Rep., 16, 2554–2564.CrossRefPubMedGoogle Scholar
  81. 81.
    Shin, C. H., Lee, H., Kim, H. R., Choi, K. H., Joung, J. G., and Kim, H. H. (2017) Regulation of PLK1 through competition between hnRNPK, miR–149–3p and miR–193b–5p, Cell Death Differ., 24, 1861–1871.CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Zhu, X. H., Wang, J. M., Yang, S. S., Wang, F. F., Hu, J. L., Xin, S. N., Men, H., Lu, G. F., Lan, X. L., Zhang, D., Wang, X. Y., Liao, W. T., Ding, Y. Q., and Liang, L. (2017) Down–regulation of DAB2IP promotes colorectal cancer invasion and metastasis by translocating hnRNPK into nucleus to enhance the transcription of MMP2, Int. J. Cancer, 141, 172–183.CrossRefPubMedGoogle Scholar
  83. 83.
    Zhao, S., Feng, J., Wang, Q., Tian, L., Zhang, Y., and Li, H. (2018) hnRNP K plays a protective role in TNF–alpha–induced apoptosis in podocytes, Biosci. Rep., 38, doi: 10.1042/BSR20180288.Google Scholar
  84. 84.
    Kim, T., Jeon, Y. J., Cui, R., Lee, J. H., Peng, Y., Kim, S. H., Tili, E., Alder, H., and Croce, C. M. (2015) Role of MYC–regulated long noncoding RNAs in cell cycle regula–tion and tumorigenesis, J. Natl. Cancer Inst., 107, doi: 10.1093/jnci/dju505.Google Scholar
  85. 85.
    Huang, H., Han, Y., Yang, X., Li, M., Zhu, R., Hu, J., Zhang, X., Wei, R., Li, K., and Gao, R. (2017) HNRNPK inhibits gastric cancer cell proliferation through p53/p21/CCND1 pathway, Oncotarget, 8, 103364–103374.PubMedPubMedCentralGoogle Scholar
  86. 86.
    Gallardo, M., Lee, H. J., Zhang, X., Bueso–Ramos, C., Pageon, L. R., McArthur, M., Multani, A., Nazha, A., Manshouri, T., Parker–Thornburg, J., Rapado, I., Quintas–Cardama, A., Kornblau, S. M., Martinez–Lopez, J., and Post, S. M. (2015) hnRNP K is a haploinsufficient tumor suppres–sor that regulates proliferation and differentiation programs in hematologic malignancies, Cancer Cell, 28, 486–499.CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Enge, M., Bao, W., Hedstrom, E., Jackson, S. P., Moumen, A., and Selivanova, G. (2009) MDM2–depend–ent downregulation of p21 and hnRNP K provides a switch between apoptosis and growth arrest induced by pharmaco–logically activated p53, Cancer Cell, 15, 171–183.CrossRefPubMedGoogle Scholar
  88. 88.
    Moumen, A., Masterson, P., O’Connor, M. J., and Jackson, S. P. (2005) hnRNP K: an HDM2 target and tran–scriptional coactivator of p53 in response to DNA damage, Cell, 123, 1065–1078.CrossRefPubMedGoogle Scholar
  89. 89.
    Shnyreva, M., Schullery, D. S., Suzuki, H., Higaki, Y., and Bomsztyk, K. (2000) Interaction of two multifunc–tional proteins. Heterogeneous nuclear ribonucleopro–tein K and Y–box–binding protein, J. Biol. Chem., 275, 15498–15503.CrossRefPubMedGoogle Scholar
  90. 90.
    Dimitrova, N., Zamudio, J. R., Jong, R. M., Soukup, D., Resnick, R., Sarma, K., Ward, A. J., Raj, A., Lee, J. T., Sharp, P. A., and Jacks, T. (2014) LincRNA–p21 acti–vates p21 in cis to promote Polycomb target gene expres–sion and to enforce the G1/S checkpoint, Mol. Cell, 54, 777–790.CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Huarte, M., Guttman, M., Feldser, D., Garber, M., Koziol, M. J., Kenzelmann–Broz, D., Khalil, A. M., Zuk, O., Amit, I., Rabani, M., Attardi, L. D., Regev, A., Lander, E. S., Jacks, T., and Rinn, J. L. (2010) A large intergenic noncoding RNA induced by p53 mediates global gene repression in the p53 response, Cell, 142, 409–419.CrossRefPubMedPubMedCentralGoogle Scholar
  92. 92.
    Denisenko, O. N., and Bomsztyk, K. (1997) The product of the murine homolog of the Drosophila extra sex combs gene displays transcriptional repressor activity, Mol. Cell. Biol., 17, 4707–4717.CrossRefPubMedPubMedCentralGoogle Scholar
  93. 93.
    Waggoner, S. A., Johannes, G. J., and Liebhaber, S. A. (2009) Depletion of the poly(C)–binding proteins alphaCP1 and alphaCP2 from K562 cells leads to p53–independent induction of cyclin–dependent kinase inhibitor (CDKN1A) and G1 arrest, J. Biol. Chem., 284, 9039–9049.CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Link, L. A., Howley, B. V., Hussey, G. S., and Howe, P. H. (2016) PCBP1/HNRNP E1 protects chromosomal integrity by translational regulation of CDC27, Mol. Cancer Res., 14, 634–646.CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    Ji, X., Humenik, J., Yang, D., and Liebhaber, S. A. (2018) PolyC–binding proteins enhance expression of the CDK2 cell cycle regulatory protein via alternative splicing, Nucleic Acids Res., 46, 2030–2044.CrossRefPubMedGoogle Scholar
  96. 96.
    Zhang, Y., Meng, L., Xiao, L., Liu, R., Li, Z., and Wang, Y. L. (2018) The RNA–binding protein PCBP1 functions as a tumor suppressor in prostate cancer by inhibiting mitogen activated protein kinase 1, Cell. Physiol. Biochem., 48, 1747–1754.CrossRefPubMedGoogle Scholar
  97. 97.
    Ji, F. J., Wu, Y. Y., An, Z., Liu, X. S., Jiang, J. N., Chen, F. F., and Fang, X. D. (2017) Expression of both poly(rC)–binding protein 1 (PCBP1) and miRNA–3978 is sup–pressed in peritoneal gastric cancer metastasis, Sci. Rep., 7, 15488.CrossRefPubMedPubMedCentralGoogle Scholar
  98. 98.
    Grelet, S., Link, L. A., Howley, B., Obellianne, C., Palanisamy, V., Gangaraju, V. K., Diehl, J. A., and Howe, P. H. (2017) A regulated PNUTS mRNA to lncRNA splice switch mediates EMT and tumour progression, Nat. Cell Biol., 19, 1105–1115.CrossRefPubMedPubMedCentralGoogle Scholar
  99. 99.
    Zhang, W., Shi, H., Zhang, M., Liu, B., Mao, S., Li, L., Tong, F., Liu, G., Yang, S., and Wang, H. (2016) Poly(C)–binding protein 1 represses autophagy through downregu–lation of LC3B to promote tumor cell apoptosis in starva–tion, Int. J. Biochem. Cell Biol., 73, 127–136.CrossRefPubMedGoogle Scholar
  100. 100.
    Li, J., Feng, Q., Wei, X., and Yu, Y. (2016) MicroRNA–490 regulates lung cancer metastasis by targeting poly(rC)–binding protein 1, Tumour Biol., 37, 15221–15228.CrossRefPubMedGoogle Scholar
  101. 101.
    Huo, L. R., Ju, W., Yan, M., Zou, J. H., Yan, W., He, B., Zhao, X. L., Jenkins, E. C., Brown, W. T., and Zhong, N. (2010) Identification of differentially expressed transcripts and translatants targeted by knock–down of endogenous PCBP1, Biochim. Biophys. Acta, 1804, 1954–1964.CrossRefPubMedGoogle Scholar
  102. 102.
    Tripathi, V., and Zhang, Y. E. (2017) Redirecting RNA splicing by SMAD3 turns TGF–beta into a tumor promot–er, Mol. Cell Oncol., 4, e1265699.Google Scholar
  103. 103.
    Howley, B. V., Hussey, G. S., Link, L. A., and Howe, P. H. (2016) Translational regulation of inhibin betaA by TGFbeta via the RNA–binding protein hnRNP E1 enhances the invasiveness of epithelial–to–mesenchymal transitioned cells, Oncogene, 35, 1725–1735.CrossRefPubMedGoogle Scholar
  104. 104.
    Zhang, P., Wang, N., Lin, X., Jin, L., Xu, H., Li, R., and Huang, H. (2016) Expression and localization of heteroge–neous nuclear ribonucleoprotein K in mouse ovaries and preimplantation embryos, Biochem. Biophys. Res. Commun., 471, 260–265.CrossRefPubMedGoogle Scholar
  105. 105.
    Lin, N., Chang, K. Y., Li, Z., Gates, K., Rana, Z. A., Dang, J., Zhang, D., Han, T., Yang, C. S., Cunningham, T. J., Head, S. R., Duester, G., Dong, P. D., and Rana, T. M. (2014) An evolutionarily conserved long noncoding RNA TUNA controls pluripotency and neural lineage commitment, Mol. Cell, 53, 1005–1019.CrossRefPubMedPubMedCentralGoogle Scholar
  106. 106.
    Bao, X., Wu, H., Zhu, X., Guo, X., Hutchins, A. P., Luo, Z., Song, H., Chen, Y., Lai, K., Yin, M., Xu, L., Zhou, L., Chen, J., Wang, D., Qin, B., Frampton, J., Tse, H. F., Pei, D., Wang, H., Zhang, B., and Esteban, M. A. (2015) The p53–induced lincRNA–p21 derails somatic cell reprogramming by sustaining H3K9me3 and CpG methy–lation at pluripotency gene promoters, Cell Res., 25, 80–92.CrossRefPubMedGoogle Scholar
  107. 107.
    Chia, N. Y., Chan, Y. S., Feng, B., Lu, X., Orlov, Y. L., Moreau, D., Kumar, P., Yang, L., Jiang, J., Lau, M. S., Huss, M., Soh, B. S., Kraus, P., Li, P., Lufkin, T., Lim, B., Clarke, N. D., Bard, F., and Ng, H. H. (2010) A genome–wide RNAi screen reveals determinants of human embry–onic stem cell identity, Nature, 468, 316–320.CrossRefPubMedGoogle Scholar
  108. 108.
    Ding, L., Paszkowski–Rogacz, M., Nitzsche, A., Slabicki, M. M., Heninger, A. K., de Vries, I., Kittler, R., Junqueira, M., Shevchenko, A., Schulz, H., Hubner, N., Doss, M. X., Sachinidis, A., Hescheler, J., Iacone, R., Anastassiadis, K., Stewart, A. F., Pisabarro, M. T., Caldarelli, A., Poser, I., Theis, M., and Buchholz, F. (2009) A genome–scale RNAi screen for Oct4 modulators defines a role of the Paf1 complex for embryonic stem cell identity, Cell Stem Cell, 4, 403–415.CrossRefPubMedGoogle Scholar
  109. 109.
    Thompson, P. J., Dulberg, V., Moon, K. M., Foster, L. J., Chen, C., Karimi, M. M., and Lorincz, M. C. (2015) hnRNP K coordinates transcriptional silencing by SETDB1 in embryonic stem cells, PLoS Genet., 11, e1004933.CrossRefGoogle Scholar
  110. 110.
    Fujikura, J., Yamato, E., Yonemura, S., Hosoda, K., Masui, S., Nakao, K., Miyazaki Ji, J., and Niwa, H. (2002) Differentiation of embryonic stem cells is induced by GATA factors, Genes Dev., 16, 784–789.CrossRefPubMedPubMedCentralGoogle Scholar
  111. 111.
    Nika, E., Brugnoli, F., Piazzi, M., Lambertini, E., Grassilli, S., Bavelloni, A., Piva, R., Capitani, S., and Bertagnolo, V. (2014) hnRNP K in PU.1–containing com–plexes recruited at the CD11b promoter: a distinct role in modulating granulocytic and monocytic differentiation of AML–derived cells, Biochem. J., 463, 115–122.CrossRefPubMedGoogle Scholar
  112. 112.
    Fan, X., Xiong, H., Wei, J., Gao, X., Feng, Y., Liu, X., Zhang, G., He, Q. Y., Xu, J., and Liu, L. (2015) Cytoplasmic hnRNPK interacts with GSK3beta and is essential for the osteoclast differentiation, Sci. Rep., 5, 17732.CrossRefPubMedPubMedCentralGoogle Scholar
  113. 113.
    Shi, Z., Zhao, C., Yang, Y., Teng, H., Guo, Y., Ma, M., Guo, X., Zhou, Z., Huo, R., and Zhou, Q. (2015) Maternal PCBP1 determines the normal timing of pronu–cleus formation in mouse eggs, Cell. Mol. Life Sci., 72, 3575–3586.CrossRefPubMedGoogle Scholar
  114. 114.
    Xia, M., He, H., Wang, Y., Liu, M., Zhou, T., Lin, M., Zhou, Z., Huo, R., Zhou, Q., and Sha, J. (2012) PCBP1 is required for maintenance of the transcriptionally silent state in fully grown mouse oocytes, Cell Cycle, 11, 2833–2842.CrossRefPubMedGoogle Scholar
  115. 115.
    Ghanem, L. R., Kromer, A., Silverman, I. M., Chatterji, P., Traxler, E., Penzo–Mendez, A., Weiss, M. J., Stanger, B. Z., and Liebhaber, S. A. (2015) The poly(C)–binding protein Pcbp2 and its retrotransposed derivative Pcbp1 are independently essential to mouse development, Mol. Cell. Biol., 36, 304–319.PubMedGoogle Scholar
  116. 116.
    Espinoza–Lewis, R. A., Yang, Q., Liu, J., Huang, Z. P., Hu, X., Chen, D., and Wang, D. Z. (2017) Poly(C)–bind–ing protein 1 (Pcbp1) regulates skeletal muscle differentia–tion by modulating microRNA processing in myoblasts, J. Biol. Chem., 292, 9540–9550.CrossRefPubMedPubMedCentralGoogle Scholar
  117. 117.
    Hayashi, K., Ohta, H., Kurimoto, K., Aramaki, S., and Saitou, M. (2011) Reconstitution of the mouse germ cell specification pathway in culture by pluripotent stem cells, Cell, 146, 519–532.CrossRefPubMedGoogle Scholar
  118. 118.
    Chen, Q., Cai, Z. K., Chen, Y. B., Gu, M., Zheng, D. C., Zhou, J., and Wang, Z. (2015) Poly(rC)–binding pro–tein–1 is central to maintenance of cancer stem cells in prostate cancer cells, Cell. Physiol. Biochem., 35, 1052–1061.CrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • I. B. Nazarov
    • 1
    Email author
  • E. I. Bakhmet
    • 1
  • A. N. Tomilin
    • 1
  1. 1.Institute of CytologyRussian Academy of SciencesSt. PetersburgRussia

Personalised recommendations