Biochemistry (Moscow)

, Volume 84, Issue 3, pp 190–204 | Cite as

Development of Hematopoietic Stem Cells in the Early Mammalian Embryo

  • S. A. RybtsovEmail author
  • M. A. Lagarkova


Hematopoietic stem cells (HSCs) were the first stem cells discovered in humans. A. A. Maximov proposed an idea of blood stem cells that was confirmed later by McCulloch and Till experimentally. HSCs were the first type of stem cells to be used in clinics and ever since are being continually used. Indeed, a single HSC transplanted intravenously is capable of giving rise to all types of blood cells. In recent decades, human and animal HSC origin, development, hierarchy, and gene signature have been extensively investigated. Due to the constant need for donor blood and HSCs suitable for therapeutic transplants, the experimental possibility of obtaining HSCs in vitro by directed differentiation of pluripotent stem cells (PSCs) has been considered in recent years. However, despite all efforts, it is not yet possible to reproduce in vitro the ontogenesis of HSCs and obtain cells capable of long-term maintenance of hematopoiesis. The study of hematopoiesis in embryonic development facilitates the establishment and improvement of protocols for deriving blood cells from PCSs and allows a better understanding of the pathogenesis of various types of proliferative blood diseases, anemia, and immunodeficiency. This review focuses on the development of hematopoiesis in mammalian ontogenesis.


hematopoietic stem cells (HSCs) hematopoietic progenitors hematopoietic hierarchy mouse development human hematopoiesis AGM embryo 



aorta-gonad-mesonephros region


Carnegie developmental stages in human embryos


days post-fertilization


mouse embryonic day 9


endothelial-to-hematopoietic transition


embryonic stem cells


green fluorescent protein


hemogenic endothelium


human embryonic material


hematopoietic stem cells


induced pluripotent stem cells


lateral plate mesoderm


T, B, and NK cell deficient mouse strain (NOD/LtSz-scid IL2R gamma null)


type I HSCs precursors (E10)


type II HSCs precursors (E11)


progenitor of HSC precursors (E9)


transforming growth factor beta


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Chertkov, I. L., and Gurevich, O. A. (1984) Stem Hematopoietic Cell and Its Microenvironment [in Russian], Meditsina, Moscow.Google Scholar
  2. 2.
    Chertkov, I. L., and Fridenshteyn, A. Ya. (1977) Cell Basics of Hematopoiesis (Hematopoietic Progenitors) [in Russian], Meditsina, Moscow.Google Scholar
  3. 3.
    Vorob’ev, A. I., Brilliant, M. D., and Chertkov, I. L. (1981) Current hematopoiesis schem and potential targets in hemoblastosis, Ter. Arkhiv, 53, 3–14.Google Scholar
  4. 4.
    Majeti, R., Park, C. Y., and Weissman, I. L. (2007) Identification of a hierarchy of multipotent hematopoietic progenitors in human cord blood, Cell Stem Cell, 1, 635–645.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Vorob’ev, A. I., Drize, N. I., and Chertkov, I. L. (2006) A hematopoiesis scheme: 2005, Ter. Arkhiv, 7, 5–12.Google Scholar
  6. 6.
    Lugovskaya, S. A., and Pochtar’, M. E. (2011) A Hematology Atlas [in Russian], 3rd Edn., Triada, Moscow–Tver’.Google Scholar
  7. 7.
    Yamamoto, R., Morita, Y., Ooehara, J., Hamanaka, S., Onodera, M., Rudolph, K. L., Ema, H., and Nakauchi, H. (2013) Clonal analysis unveils self–renewing lineage–restricted progenitors generated directly from hematopoiet–ic stem cells, Cell, 154, 1112–1126.CrossRefPubMedGoogle Scholar
  8. 8.
    Notta, F., Zandi, S., Takayama, N., Dobson, S., Gan, O. I., Wilson, G., Kaufmann, K. B., and McLeod, J., Laurenti, E., Dunant, C. F., McPherson, J. D., Stein, L. D., Dror, Y., and Dick, J. E. (2016) Distinct routes of line–age development reshape the human blood hierarchy across ontogeny, Science, 351, aab2116.Google Scholar
  9. 9.
    Maksimov, A. (1909) Der Lymphozyt als gemeinsame Stammzelle der verschiedenen Blutelemente in der embry–onalen Entwicklung und im postfetalen Leben der Saugetiere, Folia Haematol., 8, 125–134.Google Scholar
  10. 10.
    Maksimov, A. (2009) A lymphocyte as a common mam–malian stem cell for diverse blood cells in embryogenesis and postnatally, Cell. Ter. Transplant., 1, doi:10.3205/ctt–2009–en–000032.02.Google Scholar
  11. 11.
    Deev, R. V. (2005) Scientific legacy by Alexander Maksimov and modern day, Klet. Transplant. Tkan. Inzhener., 1, 4–11.Google Scholar
  12. 12.
    Siminovitch, L., McCulloch, E. A., and Till, J. E. (1963) The distribution of colony–forming cells among spleen colonies, J. Cell Comp. Physiol., 62, 327–336.CrossRefPubMedGoogle Scholar
  13. 13.
    Becker, A. J., McCulloch, E. A., and Till, J. E. (1963) Cytological demonstration of the clonal nature of spleen colonies derived from transplanted mouse marrow cells, Nature, 197, 452–454.CrossRefPubMedGoogle Scholar
  14. 14.
    Dieterlen–Lievre, F. (1975) On the origin of haemopoietic stem cells in the avian embryo: an experimental approach, J. Embryol. Exp. Morphol., 33, 607–619.PubMedGoogle Scholar
  15. 15.
    Medvinsky, A. L., Samoylina, N. L., Muller, A. M., and Dzierzak, E. A. (1993) An early pre–liver intraembryonic source of CFU–S in the developing mouse, Nature, 364, 64–67.CrossRefPubMedGoogle Scholar
  16. 16.
    Muller, A. M., Medvinsky, A., Strouboulis, J., Grosveld, F., and Dzierzak, E. (1994) Development of hematopoietic stem cell activity in the mouse embryo, Immunity, 1, 291–301.CrossRefPubMedGoogle Scholar
  17. 17.
    Medvinsky, A., and Dzierzak, E. (1996) Definitive hematopoiesis is autonomously initiated by the AGM region, Cell, 86, 897–906.CrossRefPubMedGoogle Scholar
  18. 18.
    Ivanovs, A., Rybtsov, S., Welch, L., Anderson, R. A., Turner, M. L., and Medvinsky, A. (2011) Highly potent human hematopoietic stem cells first emerge in the intraembryonic aorta–gonad–mesonephros region, J. Exp. Med., 208, 2417–2427.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Baron, M. H. (2013) Concise review: early embryonic ery–thropoiesis: not so primitive after all, Stem Cells, 31, 849–856.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Zhang, H., and Reilly, M. P. (2017) Human induced pluripotent stem cell–derived macrophages for unraveling human macrophage biology, Arterioscler. Thromb. Vasc. Biol., 37, 2000–2006.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Yamane, T. (2018) Mouse yolk sac hematopoiesis, Front. Cell Dev. Biol., 6, 80.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Antonchuk, J., Sauvageau, G., and Humphries, R. K. (2002) HOXB4–induced expansion of adult hematopoietic stem cells ex vivo, Cell, 109, 39–45.CrossRefPubMedGoogle Scholar
  23. 23.
    McKinney–Freeman, S. L., Naveiras, O., Yates, F., Loewer, S., Philitas, M., Curran, M., Park, P. J., and Daley, G. Q. (2009) Surface antigen phenotypes of hematopoietic stem cells from embryos and murine embryonic stem cells, Blood, 114, 268–278.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Kyba, M., Perlingeiro, R. C., and Daley, G. Q. (2002) HoxB4 confers definitive lymphoid–myeloid engraftment potential on embryonic stem cell and yolk sac hematopoi–etic progenitors, Cell, 109, 29–37.CrossRefPubMedGoogle Scholar
  25. 25.
    Blaser, B. W., and Zon, L. I. (2018) Making HSCs in vitro: don’t forget the hemogenic endothelium, Blood, 132, 1372–1378.CrossRefPubMedGoogle Scholar
  26. 26.
    Ivanovs, A., Rybtsov, S., Ng, E. S., Stanley, E. G., Elefanty, A. G., and Medvinsky, A. (2017) Human haematopoietic stem cell development: from the embryo to the dish, Development, 144, 2323–2337.CrossRefPubMedGoogle Scholar
  27. 27.
    Lugus, J. J., Park, C., Ma, Y. D., and Choi, K. (2009) Both primitive and definitive blood cells are derived from Flk–1+ mesoderm, Blood, 113, 563–566.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Nostro, M. C., Cheng, X., Keller, G. M., and Gadue, P. (2008) Wnt, activin, and BMP signaling regulate distinct stages in the developmental pathway from embryonic stem cells to blood, Cell Stem Cell, 2, 60–71.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Ditadi, A., Sturgeon, C. M., and Keller, G. (2017) A view of human haematopoietic development from the Petri dish, Nat. Rev. Mol. Cell Biol., 18, 56–67.CrossRefPubMedGoogle Scholar
  30. 30.
    Slukvin, I. I., and Kumar, A. (2018) The mesenchymoan–gioblast, mesodermal precursor for mesenchymal and endothelial cells, Cell Mol. Life Sci., doi: 10.1007/s00018–018–2871–3.Google Scholar
  31. 31.
    Sakurai, H., Era, T., Jakt, L. M., Okada, M., Nakai, S., and Nishikawa, S. (2006) In vitro modeling of paraxial and lat–eral mesoderm differentiation reveals early reversibility, Stem Cells, 24, 575–586.CrossRefPubMedGoogle Scholar
  32. 32.
    Park, C., Afrikanova, I., Chung, Y. S., Zhang, W. J., Arentson, E., Fong, G. G., Rosendahl, A., and Choi, K. (2004) A hierarchical order of factors in the generation of FLK1–and SCL–expressing hematopoietic and endothelial progenitors from embryonic stem cells, Development, 131, 2749–2762.CrossRefPubMedGoogle Scholar
  33. 33.
    Shalaby, F., Ho, J., Stanford, W. L., Fischer, K. D., Schuh, A. C., Schwartz, L., Bernstein, A., and Rossant, J. (1997) A requirement for Flk1 in primitive and definitive hematopoiesis and vasculogenesis, Cell, 89, 981–990.CrossRefPubMedGoogle Scholar
  34. 34.
    Ferkowicz, M. J., and Yoder, M. C. (2005) Blood island formation: longstanding observations and modern interpre–tations, Exp. Hematol., 33, 1041–1047.CrossRefPubMedGoogle Scholar
  35. 35.
    Ferkowicz, M. J., Starr, M., Xie, X., Li, W., Johnson, S. A., Shelley, W. C., Morrison, P. R., and Yoder, M. C. (2003) CD41 expression defines the onset of primitive and defini–tive hematopoiesis in the murine embryo, Development, 130, 4393–4403.CrossRefPubMedGoogle Scholar
  36. 36.
    Padron–Barthe, L., Temino, S., Villa del Campo, C., Carramolino, L., Isern, J., and Torres, M. (2014) Clonal analysis identifies hemogenic endothelium as the source of the blood–endothelial common lineage in the mouse embryo, Blood, 124, 2523–2532.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Shivdasani, R. A., Mayer, E. L,, and Orkin, S. H. (1995) Absence of blood formation in mice lacking the T–cell leukaemia oncoprotein tal–1/SCL, Nature, 373, 432–434.CrossRefPubMedGoogle Scholar
  38. 38.
    Robb, L., Lyons, I., Li, R., Hartley, L., Kontgen, F., Harvey, R. P., Metcalf, D., and Begley, C. G. (1995) Absence of yolk sac hematopoiesis from mice with a target–ed disruption of the scl gene, Proc. Natl. Acad. Sci. USA, 92, 7075–7079.CrossRefPubMedGoogle Scholar
  39. 39.
    Scialdone, A., Tanaka, Y., Jawaid, W., Moignard, V., Wilson, N. K., Macaulay, I. C., Marioni, J. C., and Gottgens, B. (2016) Resolving early mesoderm diversifica–tion through single–cell expression profiling, Nature, 535, 289–293.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Ng, E. S., Azzola, L., Bruveris, F. F., Calvanese, V., Phipson, B., Vlahos, K., Hirst, C., Jokubaitis, V. J., Yu, Q. C., Maksimovic, J., Liebscher, S., Januar, V., Zhang, Z., Williams, B., Conscience, A., Durnall, J., Jackson, S., Costa, M., Elliott, D., Haylock, D. N., Nilsson, S. K., Saffery, R., Schenke–Layland, K., Oshlack, A., Mikkola, H. K., Stanley, E. G., and Elefanty, A. G. (2016) Differentiation of human embryonic stem cells to HOXA+ hemogenic vasculature that resembles the aorta–gonad–mesonephros, Nat. Biotechnol., 34, 1168–1179.CrossRefPubMedGoogle Scholar
  41. 41.
    Kennedy, M., Awong, G., Sturgeon, C. M., Ditadi, A., LaMotte–Mohs, R., Zuniga–Pflucker, J. C., and Keller, G. (2012) T lymphocyte potential marks the emergence of definitive hematopoietic progenitors in human pluripotent stem cell differentiation cultures, Cell Rep., 2, 1722–1735.CrossRefPubMedGoogle Scholar
  42. 42.
    Gao, L., Tober, J., Gao, P., Chen, C., Zhu, Q., Tan, K., and Speck, N. A. (2018) RUNX1 and the endothelial ori–gin of blood, Exp. Hematol., 68, 2–9.CrossRefPubMedGoogle Scholar
  43. 43.
    Hirai, H., Ogawa, M., Suzuki, N., Yamamoto, M., Breier, G., Mazda, O., Imanishi, J., and Nishikawa, S. (2003) Hemogenic and nonhemogenic endothelium can be distinguished by the activity of fetal liver kinase (Flk)–1 promoter/enhancer during mouse embryogenesis, Blood, 101, 886–893.CrossRefPubMedGoogle Scholar
  44. 44.
    Eilken, H. M., Nishikawa, S., and Schroeder, T. (2009) Continuous single–cell imaging of blood generation from haemogenic endothelium, Nature, 457, 896–900.CrossRefPubMedGoogle Scholar
  45. 45.
    Chen, M. J., Yokomizo, T., Zeigler, B. M., Dzierzak, E., and Speck, N. A. (2009) Runx1 is required for the endothe–lial to haematopoietic cell transition but not thereafter, Nature, 457, 887–891.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Liakhovitskaia, A., Gribi, R., Stamateris, E., Villain, G., Jaffredo, T., Wilkie, R., Gilchrist, D., Yang, J., Ure, J., and Medvinsky, A. (2009) Restoration of Runx1 expression in the Tie2 cell compartment rescues definitive hematopoietic stem cells and extends life of Runx1 knockout animals until birth, Stem Cells, 27, 1616–1624.CrossRefPubMedGoogle Scholar
  47. 47.
    Li, Z., Chen, M. J., Stacy, T., and Speck, N. A. (2006) Runx1 function in hematopoiesis is required in cells that express Tek, Blood, 107, 106–110.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Taoudi, S., Gonneau, C., Moore, K., Sheridan, J. M., Blackburn, C. C., Taylor, E., and Medvinsky, A. (2008) Extensive hematopoietic stem cell generation in the AGM region via maturation of VE–cadherin+CD45+ pre–defini–tive HSCs, Cell Stem Cell, 3, 99–108.CrossRefPubMedGoogle Scholar
  49. 49.
    Taoudi, S., Morrison, A. M., Inoue, H., Gribi, R., Ure, J., and Medvinsky, A. (2005) Progressive divergence of defini–tive haematopoietic stem cells from the endothelial com–partment does not depend on contact with the foetal liver, Development, 132, 4179–4191.CrossRefPubMedGoogle Scholar
  50. 50.
    Yokota, T., Huang, J., Tavian, M., Nagai, Y., Hirose, J., Zuniga–Pflucker, J. C., Peault, B., and Kincade, P. W. (2006) Tracing the first waves of lymphopoiesis in mice, Development, 133, 2041–2051.CrossRefPubMedGoogle Scholar
  51. 51.
    Boisset, J. C., Clapes, T., Van Der Linden, R., Dzierzak, E., and Robin, C. (2013) Integrin alphaIIb (CD41) plays a role in the maintenance of hematopoietic stem cell activity in the mouse embryonic aorta, Biol. Open, 2, 525–532.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Bertrand, J. Y., Giroux, S., Golub, R., Klaine, M., Jalil, A., Boucontet, L., Godin, I., and Cumano, A. (2005) Characterization of purified intraembryonic hematopoietic stem cells as a tool to define their site of origin, PNAS, 102, 134–139.CrossRefPubMedGoogle Scholar
  53. 53.
    Rybtsov, S., Batsivari, A., Bilotkach, K., Paruzina, D., Senserrich, J., Nerushev, O., and Medvinsky, A. (2014) Tracing the origin of the HSC hierarchy reveals an SCF–dependent, IL–3–independent CD43–embryonic precur–sor, Stem Cell Rep., 3, 489–501.Google Scholar
  54. 54.
    Rybtsov, S., Sobiesiak, M., Taoudi, S., Souilhol, C., Senserrich, J., Liakhovitskaia, A., Ivanovs, A., Frampton, J., Zhao, S., and Medvinsky, A. (2011) Hierarchical organ–ization and early hematopoietic specification of the devel–oping HSC lineage in the AGM region, J. Exp. Med., 208, 1305–1315.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Liakhovitskaia, A., Rybtsov, S., Smith, T., Batsivari, A., Rybtsova, N., Rode, C., De Bruijn, M., Buchholz, F., Gordon–Keylock, S., Zhao, S., and Medvinsky, A. (2014) Runx1 is required for progression of CD41+ embryonic pre–cursors into HSCs but not prior to this, Development, 141, 3319–3323.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Nakamura, Y., Ichikawa, M., Oda, H., Yamazaki, I., Sasaki, K., and Mitani, K. (2018) RUNX1–EVI1 induces dysplastic hematopoiesis and acute leukemia of the megakaryocytic lineage in mice, Leuk. Res., 74, 14–20.CrossRefPubMedGoogle Scholar
  57. 57.
    Antony–Debre, I., Manchev, V. T., Balayn, N., Bluteau, D., Tomowiak, C., Legrand, C., Langlois, T., Bawa, O., Tosca, L., Tachdjian, G., Leheup, B., Debili, N., Plo, I., Mills, J. A., French, D. L., Weiss, M. J., Solary, E., Favier, R., Vainchenker, W., and Raslova, H. (2015) Level of RUNX1 activity is critical for leukemic predisposition but not for thrombocytopenia, Blood, 125, 930–940.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Zeigler, B. M., Sugiyama, D., Chen, M., Guo, Y., Downs, K. M., and Speck, N. A. (2006) The allantois and chorion, when isolated before circulation or chorio–allantoic fusion, have hematopoietic potential, Development, 133, 4183–4192.CrossRefPubMedGoogle Scholar
  59. 59.
    Nishikawa, S. I., Nishikawa, S., Kawamoto, H., Yoshida, H., Kizumoto, M., Kataoka, H., and Katsura, Y. (1998) In vitro generation of lymphohematopoietic cells from endothelial cells purified from murine embryos, Immunity, 8, 761–769.CrossRefPubMedGoogle Scholar
  60. 60.
    Medvinsky, A., Rybtsov, S., and Taoudi, S. (2011) Embryonic origin of the adult hematopoietic system: advances and questions, Development, 138, 1017–1031.CrossRefPubMedGoogle Scholar
  61. 61.
    Boisset, J. C., Clapes, T., Klaus, A., Papazian, N., Onderwater, J., Mommaas–Kienhuis, M., Cupedo, T., and Robin, C. (2015) Progressive maturation toward hemato–poietic stem cells in the mouse embryo aorta, Blood, 125, 465–469.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Baron, M. H., Isern, J., and Fraser, S. T. (2012) The embryonic origins of erythropoiesis in mammals, Blood, 119, 4828–4837.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Lacaud, G., and Kouskoff, V. (2017) Hemangioblast, hemogenic endothelium, and primitive versus definitive hematopoiesis, Exp. Hematol., 49, 19–24.CrossRefPubMedGoogle Scholar
  64. 64.
    Palis, J. (2016) Hematopoietic stem cell–independent hematopoiesis: emergence of erythroid, megakaryocyte, and myeloid potential in the mammalian embryo, FEBS Lett., 590, 3965–3974.Google Scholar
  65. 65.
    McGrath, K. E., Koniski, A. D., Malik, J., and Palis, J. (2003) Circulation is established in a stepwise pattern in the mammalian embryo, Blood, 101, 1669–1676.CrossRefPubMedGoogle Scholar
  66. 66.
    Palis, J., Robertson, S., Kennedy, M., Wall, C., and Keller, G. (1999) Development of erythroid and myeloid progeni–tors in the yolk sac and embryo proper of the mouse, Development, 126, 5073–5084.PubMedGoogle Scholar
  67. 67.
    Yoder, M. C., Hiatt, K., Dutt, P., Mukherjee, P., Bodine, D. M., and Orlic, D. (1997) Characterization of definitive lymphohematopoietic stem cells in the day 9 murine yolk sac, Immunity, 7, 335–344.CrossRefPubMedGoogle Scholar
  68. 68.
    Lin, Y., Yoder, M. C., and Yoshimoto, M. (2014) Lymphoid progenitor emergence in the murine embryo and yolk sac precedes stem cell detection, Stem Cells Dev., 23, 1168–1177.CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Fraser, S. T., Ogawa, M., Yu, R. T., Nishikawa, S., Yoder, M. C., and Nishikawa, S. (2002) Definitive hematopoietic commitment within the embryonic vascular endothelial–cadherin+ population, Exp. Hematol., 30, 1070–1078.CrossRefPubMedGoogle Scholar
  70. 70.
    Yoshimoto, M., Porayette, P., Glosson, N. L., Conway, S. J., Carlesso, N., Cardoso, A. A., Kaplan, M. H., and Yoder, M. C. (2012) Autonomous murine T–cell progenitor pro–duction in the extra–embryonic yolk sac before HSC emer–gence, Blood, 119, 5706–5714.CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Masuda, K., Kubagawa, H., Ikawa, T., Chen, C. C., Kakugawa, K., Hattori, M., Kageyama, R., Cooper, M. D., Minato, N., Katsura, Y., and Kawamoto, H. (2005) Prethymic T–cell development defined by the expression of paired immunoglobulin–like receptors, EMBO J., 24, 4052–4060.CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Boiers, C., Carrelha, J., Lutteropp, M., Luc, S., Green, J. C., Azzoni, E., Woll, P. S., Mead, A. J., Hultquist, A., Swiers, G., Perdiguero, E. G., Macaulay, I. C., Melchiori, L., Luis, T. C., Kharazi, S., Bouriez–Jones, T., Deng, Q., Ponten, A., Atkinson, D., Jensen, C. T., Sitnicka, E., Geissmann, F., Godin, I., Sandberg, R., de Bruijn, M. F., and Jacobsen, S. E. (2013) Lymphomyeloid contribution of an immune–restricted progenitor emerging prior to defini–tive hematopoietic stem cells, Cell Stem Cell, 13, 535–548.CrossRefPubMedGoogle Scholar
  73. 73.
    Yoshimoto, M., Montecino–Rodriguez, E., Ferkowicz, M. J., Porayette, P., Shelley, W. C., Conway, S. J., Dorshkind, K., and Yoder, M. C. (2011) Embryonic day 9 yolk sac and intra–embryonic hemogenic endothelium independently generate a B–1 and marginal zone progenitor lacking B–2 potential, PNAS, 108, 1468–1473.CrossRefPubMedGoogle Scholar
  74. 74.
    Montecino–Rodriguez, E., and Dorshkind, K. (2012) B–1B cell development in the fetus and adult, Immunity, 36, 13–21.CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Hoeffel, G., Chen, J., Lavin, Y., Low, D., Almeida F. F., See, P., Beaudin, A. E., Lum, J., Low, I., Forsberg, E. C., Poidinger, M., Zolezzi, F., Larbi, A., Ng, L. G., Chan, J. K., Greter, M., Becher, B., Samokhvalov, I. M., Merad, M., and Ginhoux, F. (2015) C–Myb+ erythro–myeloid pro–genitor–derived fetal monocytes give rise to adult tissue–res–ident macrophages, Immunity, 42, 665–678.CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Schulz, C., Gomez, P. E., Chorro, L., Szabo–Rogers, H., Cagnard, N., Kierdorf, K., Prinz, M., Wu, B., Jacobsen, S. E., Pollard, J. W., Frampton, J., Liu, K. J., and Geissmann, F. (2012) A lineage of myeloid cells independent of Myb and hematopoietic stem cells, Science, 336, 86–90.CrossRefPubMedGoogle Scholar
  77. 77.
    Hoeffel, G., and Ginhoux, F. (2018) Fetal monocytes and the origins of tissue–resident macrophages, Cell Immunol., 330, 5–15.CrossRefPubMedGoogle Scholar
  78. 78.
    Ginhoux, F., and Guilliams, M. (2016) Tissue–resident macrophage ontogeny and homeostasis, Immunity, 44, 439–449.CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Li, Z., Liu, S., Xu, J., Zhang, X., Han, D., Liu, J., Xia, M., Yi, L., Shen, Q., Xu, S., Lu, L., and Cao, X. (2018) Adult connective tissue–resident mast cells originate from late erythro–myeloid progenitors, Immunity, 49, 640–653.CrossRefPubMedGoogle Scholar
  80. 80.
    Dahlin, J. S., and Hallgren, J. (2015) Mast cell progenitors: origin, development and migration to tissues, Mol. Immunol., 63, 9–17.CrossRefPubMedGoogle Scholar
  81. 81.
    Gentek, R., Ghigo, C., Hoeffel, G., Bulle, M. J., Msallam, R., Gautier, G., Launay, P., Chen, J., Ginhoux, F., and Bajenoff, M. (2018) Hemogenic endothelial fate mapping reveals dual developmental origin of mast cells, Immunity, 48, 1160–1171.CrossRefPubMedGoogle Scholar
  82. 82.
    Lux, C. T., Yoshimoto, M., McGrath, K., Conway, S. J., Palis, J., and Yoder, M. C. (2008) All primitive and defini–tive hematopoietic progenitor cells emerging before E10 in the mouse embryo are products of the yolk sac, Blood, 111, 3435–3438.CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Wolfe, R. P., and Ahsan, T. (2013) Shear stress during early embryonic stem cell differentiation promotes hematopoiet–ic and endothelial phenotypes, Biotechnol. Bioeng., 110, 1231–1242.CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Adamo, L., Naveiras, O., Wenzel, P. L., McKinney–Freeman, S., Mack, P. J., Gracia–Sancho, J., Suchy–Dicey, A., Yoshimoto, M., Lensch, M. W., Yoder, M. C., Garcia–Cardena, G., and Daley, G. Q. (2009) Biomechanical forces promote embryonic haematopoiesis, Nature, 459, 1131–1135.CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Rybtsov, S., Ivanovs, A., Zhao, S., and Medvinsky, A. (2016) Concealed expansion of immature precursors underpins acute burst of adult HSC activity in foetal liver, Development, 143, 1284–1289.CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Wilson, A., Laurenti, E., Oser, G., van der Wath, R. C., Blanco–Bose, W., Jaworski, M., Offner, S., Dunant, C. F., Eshkind, L., Bockamp, E., Lio, P., Macdonald, H. R., and Trumpp, A. (2008) Hematopoietic stem cells reversibly switch from dormancy to self–renewal during homeostasis and repair, Cell, 135, 1118–1129.CrossRefPubMedGoogle Scholar
  87. 87.
    Dzierzak, E., and Bigas, A. (2018) Blood development: hematopoietic stem cell dependence and independence, Cell Stem Cell, 22, 639–651.CrossRefPubMedGoogle Scholar
  88. 88.
    Samokhvalov, I. M., Samokhvalova, N. I., and Nishikawa, S. (2007) Cell tracing shows the contribution of the yolk sac to adult haematopoiesis, Nature, 446, 1056–1061.CrossRefPubMedGoogle Scholar
  89. 89.
    Samokhvalov, I. M., Thomson, A. M., Lalancette, C., Liakhovitskaia, A., Ure, J., and Medvinsky, A. (2006) Multifunctional reversible knockout/reporter system enabling fully functional reconstitution of the AML1/Runx1 locus and rescue of hematopoiesis, Genesis, 44, 115–121.CrossRefPubMedGoogle Scholar
  90. 90.
    Tanaka, Y., Hayashi, M., Kubota, Y., Nagai, H., Sheng, G., Nishikawa, S., and Samokhvalov, I. M. (2012) Early onto–genic origin of the hematopoietic stem cell lineage, Proc. Natl. Acad. Sci. USA, 109, 4515–4520.CrossRefPubMedGoogle Scholar
  91. 91.
    Gordon–Keylock, S., Sobiesiak, M., Rybtsov, S., Moore, K., and Medvinsky, A. (2013) Mouse extraembryonic arte–rial vessels harbor precursors capable of maturing into definitive HSCs, Blood, 122, 2338–2345.CrossRefPubMedPubMedCentralGoogle Scholar
  92. 92.
    Cumano, A., Ferraz, J. C., Klaine, M., Di Santo, J. P., and Godin, I. (2001) Intraembryonic, but not yolk sac hematopoi–etic precursors, isolated before circulation, provide long–term multilineage reconstitution, Immunity, 15, 477–485.CrossRefPubMedGoogle Scholar
  93. 93.
    Shultz, L. D., Lyons, B. L., Burzenski, L. M., Gott, B., Chen, X., Chaleff, S., Kotb, M., Gillies, S. D., King, M., Mangada, J., Greiner, D. L., and Handgretinger, R. (2005) Human lymphoid and myeloid cell development in NOD/LtSz–scid IL2Rγnull mice engrafted with mobilized human hemopoietic stem cells, J. Immunol., 174, 6477–6489.CrossRefPubMedGoogle Scholar
  94. 94.
    Arora, N., Wenzel, P. L., McKinney–Freeman, S. L., Ross, S. J., Kim, P. G., Chou, S. S., Yoshimoto, M., Yoder, M. C., and Daley, G. Q. (2014) Effect of develop–mental stage of HSC and recipient on transplant out–comes, Dev. Cell, 29, 621–628.CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    Baumann, C. I., Bailey, A. S., Li, W., Ferkowicz, M. J., Yoder, M. C., and Fleming, W. H. (2004) PECAM–1 is expressed on hematopoietic stem cells throughout ontoge–ny and identifies a population of erythroid progenitors, Blood, 104, 1010–1016.CrossRefPubMedGoogle Scholar
  96. 96.
    Rybtsov, S., Bilotkach, K., Velasco, J. S., and Medvinsky, A. (2013) Identification of a novel type of immature haematopoietic stem cell (HSC) precursor in mouse devel–opment, FEBS J., 280, 442–443.Google Scholar
  97. 97.
    Gekas, C., Rhodes, K. E., Van Handel, B., Chhabra, A., Ueno, M., and Mikkola, H. K. (2010) Hematopoietic stem cell development in the placenta, Int. J. Dev. Biol., 54, 1089–1098.CrossRefPubMedPubMedCentralGoogle Scholar
  98. 98.
    Gekas, C., Dieterlen–Lievre, F., Orkin, S. H., and Mikkola, H. K. (2005) The placenta is a niche for hematopoietic stem cells, Dev. Cell, 8, 365–375.CrossRefPubMedGoogle Scholar
  99. 99.
    Ottersbach, K., and Dzierzak, E. (2005) The murine pla–centa contains hematopoietic stem cells within the vascu–lar labyrinth region, Dev. Cell, 8, 377–387.CrossRefPubMedGoogle Scholar
  100. 100.
    Ivanovs, A., Rybtsov, S., Anderson, R. A., and Medvinsky, A. (2014) CD43 but not CD41 marks the first hematopoi–etic stem cells in the human embryo, Blood, 124, 4330.Google Scholar
  101. 101.
    Ivanovs, A., Rybtsov, S., Welch, L., Anderson, R. A., Turner, M. L., and Medvinsky, A. (2013) Highly potent human haemopoietic stem cells first emerge in the intraembryonic aorta–gonad–mesonephros region, Lancet, 381, 11–12.CrossRefGoogle Scholar
  102. 102.
    Vodyanik, M. A., Thomson, J. A., and Slukvin, I. I. (2006) Leukosialin (CD43) defines hematopoietic progenitors in human embryonic stem cell differentiation cultures, Blood, 108, 2095–2105.CrossRefPubMedPubMedCentralGoogle Scholar
  103. 103.
    Kessel, K. U., Bluemke, A., Scholer, H. R., Zaehres, H., Schlenke, P., and Dorn, I. (2017) Emergence of CD43–expressing hematopoietic progenitors from human induced pluripotent stem cells, Transfus. Med. Hemother., 44, 143–150.CrossRefPubMedPubMedCentralGoogle Scholar
  104. 104.
    Ivanovs, A., Rybtsov, S., Anderson, R. A., Turner, M. L., and Medvinsky, A. (2014) Identification of the niche and phenotype of the first human hematopoietic stem cells, Stem Cell Rep., 2, 449–456.CrossRefGoogle Scholar
  105. 105.
    Batsivari, A., Rybtsov, S., Souilhol, C., Binagui–Casas, A., Hills, D., Zhao, S., Travers, P., and Medvinsky, A. (2017) Understanding hematopoietic stem cell development through functional correlation of their proliferative status with the intra–aortic cluster architecture, Stem Cell Rep., 8, 1549–1562.CrossRefGoogle Scholar
  106. 106.
    Wright, D. E., Wagers, A. J., Gulati, A. P., Johnson, F. L., and Weissman, I. L. (2001) Physiological migration of hematopoietic stem and progenitor cells, Science, 294, 1933–1936.CrossRefPubMedGoogle Scholar
  107. 107.
    McGarvey, A. C., Rybtsov, S., Souilhol, C., Tamagno, S., Rice, R., Hills, D., Godwin, D., Rice, D., Tomlinson, S. R., and Medvinsky, A. (2017) A molecular roadmap of the AGM region reveals BMPER as a novel regulator of HSC maturation, J. Exp. Med., 214, 3731–3751.CrossRefPubMedPubMedCentralGoogle Scholar
  108. 108.
    Taoudi, S., and Medvinsky, A. (2007) Functional identifi–cation of the hematopoietic stem cell niche in the ventral domain of the embryonic dorsal aorta, Proc. Natl. Acad. Sci. USA, 104, 9399–9403.CrossRefPubMedGoogle Scholar
  109. 109.
    Souilhol, C., Gonneau, C., Lendinez, J. G., Batsivari, A., Rybtsov, S., Wilson, H., Morgado–Palacin, L., Hills, D., Taoudi, S., Antonchuk, J., Zhao, S., and Medvinsky, A. (2016) Inductive interactions mediated by interplay of asymmetric signalling underlie development of adult haematopoietic stem cells, Nat. Commun., 7, 10784.CrossRefPubMedPubMedCentralGoogle Scholar
  110. 110.
    Gao, X., Xu, C., Asada, N., and Frenette, P. S. (2018) The hematopoietic stem cell niche: from embryo to adult, Development, 145, dev139691.Google Scholar
  111. 111.
    Chou, S., and Lodish, H. F. (2010) Fetal liver hepatic pro–genitors are supportive stromal cells for hematopoietic stem cells, Proc. Natl. Acad. Sci. USA, 107, 7799–7804.CrossRefPubMedGoogle Scholar
  112. 112.
    Kapp, F. G., Perlin, J. R., Hagedorn, E. J., Gansner, J. M., Schwarz, D. E., O’Connell, L. A., Johnson, N. S., Amemiya, C., Fisher, D. E., Wolfle, U., Trompouki, E., Niemeyer, C. M., Driever, W., and Zon, L. I. (2018) Protection from UV light is an evolutionarily conserved feature of the haematopoietic niche, Nature, 558, 445–448.CrossRefPubMedPubMedCentralGoogle Scholar
  113. 113.
    Testa, U., Labbaye, C., Castelli, G., and Pelosi, E. (2016) Oxidative stress and hypoxia in normal and leukemic stem cells, Exp. Hematol., 44, 540–560.CrossRefPubMedGoogle Scholar
  114. 114.
    Suda, T., Takubo, K., and Semenza, G. L. (2011) Metabolic regulation of hematopoietic stem cells in the hypoxic niche, Cell Stem Cell, 9, 298–310.CrossRefPubMedGoogle Scholar
  115. 115.
    Miharada, K., Karlsson, G., Rehn, M., Rorby, E., Siva, K., Cammenga, J., and Karlsson, S. (2012) Hematopoietic stem cells are regulated by Cripto, as an intermediary of HIF–1α in the hypoxic bone marrow niche, Ann. N. Y. Acad. Sci., 1266, 55–62.CrossRefPubMedGoogle Scholar
  116. 116.
    Wei, Q., and Frenette, P. S. (2018) Niches for hematopoi–etic stem cells and their progeny, Immunity, 48, 632–648.CrossRefGoogle Scholar
  117. 117.
    Medvinsky, A. L., Gan, O. I., Semenova, M. L., and Samoylina, N. L. (1996) Development of day–8 colony–forming unit–spleen hematopoietic progenitors during early murine embryogenesis: spatial and temporal map–ping, Blood, 87, 557–566.PubMedGoogle Scholar
  118. 118.
    Durand, C., Robin, C., Bollerot, K., Baron, M. H., Ottersbach, K., and Dzierzak, E. (2007) Embryonic stro–mal clones reveal developmental regulators of definitive hematopoietic stem cells, Proc. Natl. Acad. Sci. USA, 104, 20838–20843.CrossRefPubMedGoogle Scholar
  119. 119.
    Durand, C., Robin, C., and Dzierzak, E. (2006) Mesenchymal lineage potentials of aorta–gonad–mesonephros stromal clones, Haematologica, 91, 1172–1179.PubMedGoogle Scholar
  120. 120.
    Oostendorp, R. A., Robin, C., Steinhoff, C., Marz, S., Brauer, R., Nuber, U. A., Dzierzak, E. A., and Peschel, C. (2005) Long–term maintenance of hematopoietic stem cells does not require contact with embryo–derived stromal cells in cocultures, Stem Cells, 23, 842–851.CrossRefPubMedGoogle Scholar
  121. 121.
    Oostendorp, R. A., Harvey, K. N., Kusadasi, N., de Bruijn, M. F., Saris, C., Ploemacher, R. E., Medvinsky, A. L., and Dzierzak, E. A. (2002) Stromal cell lines from mouse aorta–gonads–mesonephros subregions are potent supporters of hematopoietic stem cell activity, Blood, 99, 1183–1189.CrossRefPubMedGoogle Scholar
  122. 122.
    Buckley, S. M., Ulloa–Montoya, F., Abts, D., Oostendorp, R. A., Dzierzak, E., Ekker, S. C., and Verfaillie, C. M. (2011) Maintenance of HSC by Wnt5a secreting AGM–derived stromal cell line, Exp. Hematol., 39, 114–123.CrossRefPubMedGoogle Scholar
  123. 123.
    Robin, C., Ottersbach, K., Durand, C., Peeters, M., Vanes, L., Tybulewicz, V., and Dzierzak, E. (2006) An unexpected role for IL–3 in the embryonic development of hematopoietic stem cells, Dev. Cell, 11, 171–180.CrossRefPubMedGoogle Scholar
  124. 124.
    Ding, L., Saunders, T. L., Enikolopov, G., and Morrison, S. J. (2012) Endothelial and perivascular cells maintain haematopoietic stem cells, Nature, 481, 457–462.CrossRefPubMedPubMedCentralGoogle Scholar
  125. 125.
    Souilhol, C., Lendinez, J. G., Rybtsov, S., Murphy, F., Wilson, H., Hills, D., Batsivari, A., Binagui–Casas, A., McGarvey, A. C., MacDonald, H. R., Kageyama, R., Siebel, C., Zhao, S., and Medvinsky, A. (2016) Developing HSCs become Notch independent by the end of matura–tion in the AGM region, Blood, 128, 1567–1577.CrossRefPubMedPubMedCentralGoogle Scholar
  126. 126.
    Fitch, S. R., Kimber, G. M., Wilson, N. K., Parker, A., Mirshekar–Syahkal, B., Gottgens, B., Medvinsky, A., Dzierzak, E., and Ottersbach, K. (2012) Signaling from the sympathetic nervous system regulates hematopoietic stem cell emergence during embryogenesis, Cell Stem Cell, 11, 554–566.CrossRefPubMedPubMedCentralGoogle Scholar
  127. 127.
    Gribi, R., Hook, L., Ure, J., and Medvinsky, A. (2006) The differentiation programme of embryonic definitive hematopoietic stem cells is largely α4 integrin independ–ent, Blood, 108, 501–509.CrossRefPubMedGoogle Scholar
  128. 128.
    Kim, A. G., Vrecenak, J. D., Boelig, M. M., Eissenberg, L., Rettig, M. P., Riley, J. S., Holt, M. S., Conner, M. A., Loukogeorgakis, S. P., Li, H., DiPersio, J. F., Flake, A. W., and Peranteau, W. H. (2016) Enhanced in utero allogene–ic engraftment in mice after mobilizing fetal HSCs by α4β1/7 inhibition, Blood, 128, 2457–2461.CrossRefPubMedPubMedCentralGoogle Scholar
  129. 129.
    Hirsch, E., Iglesias, A., Potocnik, A. J., Hartmann, U., and Fassler, R. (1996) Impaired migration but not differ–entiation of haematopoietic stem cells in the absence of β1 integrins, Nature, 380, 171–175.CrossRefPubMedGoogle Scholar
  130. 130.
    Potocnik, A. J., Brakebusch, C., and Fassler, R. (2000) Fetal and adult hematopoietic stem cells require β1 inte–grin function for colonizing fetal liver, spleen, and bone marrow, Immunity, 12, 653–663.CrossRefPubMedGoogle Scholar
  131. 131.
    Jiang, X., Hawkins, J. S., Lee, J., Lizama, C. O., Bos, F. L., Zape, J. P., Ghatpande, P., Peng, Y., Louie, J., Lagna, G., Zovein, A. C., and Hata, A. (2017) Let–7 microRNA–dependent control of leukotriene signaling regulates the tran–sition of hematopoietic niche in mice, Nat. Commun., 8, 128.CrossRefPubMedPubMedCentralGoogle Scholar
  132. 132.
    Ratajczak, M. Z. (2010) Spotlight series on stem cell mobilization: many hands on the ball, but who is the quar–terback? Leukemia, 24, 1665–1666.CrossRefPubMedGoogle Scholar
  133. 133.
    Kumaravelu, P., Hook, L., Morrison, A. M., Ure, J., Zhao, S., Zuyev, S., Ansell, J., and Medvinsky, A. (2002) Quantitative developmental anatomy of definitive haematopoietic stem cells/long–term repopulating units (HSC/RUs): role of the aorta–gonad–mesonephros (AGM) region and the yolk sac in colonisation of the mouse embryonic liver, Development, 129, 4891–4899.PubMedGoogle Scholar
  134. 134.
    Ema, H., and Nakauchi, H. (2000) Expansion of hematopoietic stem cells in the developing liver of a mouse embryo, Blood, 95, 2284–2288.PubMedGoogle Scholar
  135. 135.
    Khan, J. A., Mendelson, A., Kunisaki, Y., Birbrair, A., Kou, Y., Arnal–Estape, A., Pinho, S., Ciero, P., Nakahara, F., Ma’ayan, A., Bergman, A., Merad, M., and Frenette, P. S. (2016) Fetal liver hematopoietic stem cell niches associate with portal vessels, Science, 351, 176–180.CrossRefPubMedGoogle Scholar
  136. 136.
    Chou, S., Flygare, J., and Lodish, H. F. (2013) Fetal hepatic progenitors support long–term expansion of hematopoietic stem cells, Exp. Hematol., 41, 479–490.CrossRefPubMedPubMedCentralGoogle Scholar
  137. 137.
    Zhang, C. C., and Lodish, H. F. (2004) Insulin–like growth factor 2 expressed in a novel fetal liver cell popula–tion is a growth factor for hematopoietic stem cells, Blood, 103, 2513–2521.CrossRefPubMedGoogle Scholar
  138. 138.
    Zhang, C. C., Kaba, M., Ge, G., Xie, K., Tong, W., Hug, C., and Lodish, H. F. (2006) Angiopoietin–like proteins stimulate ex vivo expansion of hematopoietic stem cells, Nat. Med., 12, 240–245.CrossRefPubMedPubMedCentralGoogle Scholar
  139. 139.
    Zhao, Y., Zhou, J., Liu, D., Dong, F., Cheng, H., Wang, W., Pang, Y., Wang, Y., Mu, X., Ni, Y., Li, Z., Xu, H., Hao, S., Wang, X., Ma, S., Wang, Q. F., Xiao, G., Yuan, W., Liu, B., and Cheng, T. (2015) ATF4 plays a pivotal role in the development of functional hematopoietic stem cells in mouse fetal liver, Blood, 126, 2383–2391.CrossRefPubMedPubMedCentralGoogle Scholar
  140. 140.
    Taichman, R. S. (2005) Blood and bone: two tissues whose fates are intertwined to create the hematopoietic stem–cell niche, Blood, 105, 2631–2639.CrossRefPubMedPubMedCentralGoogle Scholar
  141. 141.
    Boulais, P. E., and Frenette, P. S. (2015) Making sense of hematopoietic stem cell niches, Blood, 125, 2621–2629.CrossRefPubMedPubMedCentralGoogle Scholar
  142. 142.
    Omatsu, Y., Sugiyama, T., Kohara, H., Kondoh, G., Fujii, N., Kohno, K., and Nagasawa, T. (2010) The essential functions of adipo–osteogenic progenitors as the hematopoietic stem and progenitor cell niche, Immunity, 33, 387–399.CrossRefPubMedGoogle Scholar
  143. 143.
    Spiegel, A., Shivtiel, S., Kalinkovich, A., Ludin, A., Netzer, N., Goichberg, P., Azaria, Y., Resnick, I., Hardan, I., Ben–Hur, H., Nagler, A., Rubinstein, M., and Lapidot, T. (2007) Catecholaminergic neurotransmitters regulate migration and repopulation of immature human CD34+ cells through Wnt signaling, Nat. Immunol., 8, 1123–1131.CrossRefPubMedGoogle Scholar
  144. 144.
    Garcia–Garcia, A., Korn, C., Garcia–Fernandez, M., Domingues, O., Villadiego, J., Martin–Perez, D., Isern, J., Bejarano–Garcia, J. A., Zimmer, J., Perez–Simon, J. A., Toledo–Aral, J. J., Michel, T., Airaksinen, M. S., and Mendez–Ferrer, S. (2019) Dual cholinergic signals regu–late daily migration of hematopoietic stem cells and leuko–cytes, Blood, 133, 224–236.CrossRefPubMedGoogle Scholar
  145. 145.
    Pierce, H., Zhang, D., Magnon, C., Lucas, D., Christin, J. R., Huggins, M., Schwartz, G. J., and Frenette, P. S. (2017) Cholinergic signals from the CNS regulate G–CSF–mediated HSC mobilization from bone marrow via a glu–cocorticoid signaling relay, Cell Stem Cell, 20, 648–658.CrossRefPubMedPubMedCentralGoogle Scholar
  146. 146.
    Mendez–Ferrer, S., Lucas, D., Battista, M., and Frenette, P. S. (2008) Haematopoietic stem cell release is regulated by circadian oscillations, Nature, 452, 442–447.CrossRefPubMedGoogle Scholar
  147. 147.
    Maryanovich, M., Zahalka, A. H., Pierce, H., Pinho, S., Nakahara, F., Asada, N., Wei, Q., Wang, X., Ciero, P., Xu, J., Leftin, A., and Frenette, P. S. (2018) Adrenergic nerve degeneration in bone marrow drives aging of the hematopoietic stem cell niche, Nat. Med., 24, 782–791.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.MRC Centre for Regenerative MedicineUniversity of EdinburghEdinburghUK
  2. 2.Federal Research and Clinical Centre of Physical-Chemical MedicineFederal Medical-Biological AgencyMoscowRussia

Personalised recommendations