Advertisement

Biochemistry (Moscow)

, Volume 84, Issue 2, pp 137–146 | Cite as

Nature and Functions of Telomeric Transcripts

  • M. Yu. Kordyukova
  • A. I. KalmykovaEmail author
Review
  • 10 Downloads

Abstract

Telomeres are complex and dynamic structures whose functions and composition change during the cell cycle and development. Telomeric transcripts are essential components of telomeres. Transcription regulation and cellular levels of telomeric RNAs are closely associated with the control of telomere length, formation of telomeric chromatin, telomere replication, and regulation of non-telomeric gene transcription, which indicates a critical regulatory role of telomeric RNAs in telomere protection and transmission of signals about the state of telomeres to cellular genes. The studies of telomeric transcriptome in early Drosophila development have revealed a new level of genomic stability regulation involving telomer-ic RNAs. Due to their ability to interact with multiple proteins and to translocate in the cell, telomeric transcripts are impor-tant participants of telomeric signaling pathways, whose mechanisms are still to be understood at the organism level.

Keywords

telomeres telomeric RNA TERRA chromatin retrotransposon HeT-A development oogenesis Drosophila 

Abbreviations

ALT

alternative lengthening of telomeres

hnRNP

heterogeneous nuclear ribonucleoprotein

LINE

long interspersed nuclear element

ORC

origin recognition complex

piRNA

Piwi-interacting RNA

POT1

protection of telomeres 1 protein

RPA

replication protein A

TERC

telomerase RNA component

TERRA

telomeric repeat-containing RNA

TERT

telomerase reverse transcriptase

TRF1(2)

telomeric repeat-binding factors 1(2)

UTR

untranslated region

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Palm, W., and de Lange, T. (2008) How shelterin protects mammalian telomeres, Annu. Rev. Genet., 42, 301–334.CrossRefGoogle Scholar
  2. 2.
    Benetti, R., Garcia–Cao, M., and Blasco, M. A. (2007) Telomere length regulates the epigenetic status of mammalian telomeres and subtelomeres, Nat. Genet., 39, 243–250.CrossRefGoogle Scholar
  3. 3.
    Garcia–Cao, M., O’Sullivan, R., Peters, A. H., Jenuwein, T., and Blasco, M. A. (2004) Epigenetic regulation of telomere length in mammalian cells by the Suv39h1 and Suv39h2 histone methyltransferases, Nat. Genet., 36, 94–99.CrossRefGoogle Scholar
  4. 4.
    Gonzalo, S., Jaco, I., Fraga, M. F., Chen, T., Li, E., Esteller, M., and Blasco, M. A. (2006) DNA methyltrans–ferases control telomere length and telomere recombina–tion in mammalian cells, Nat. Cell Biol., 8, 416–424.CrossRefGoogle Scholar
  5. 5.
    Doheny, J. G., Mottus, R., and Grigliatti, T. A. (2008) Telomeric position effect–a third silencing mechanism in eukaryotes, PLoS One, 3, e3864.CrossRefGoogle Scholar
  6. 6.
    Cryderman, D. E., Morris, E. J., Biessmann, H., Elgin, S. C., and Wallrath, L. L. (1999) Silencing at Drosophila telomeres: nuclear organization and chromatin structure play critical roles, EMBO J., 18, 3724–3735.CrossRefGoogle Scholar
  7. 7.
    Baur, J. A., Zou, Y., Shay, J. W., and Wright, W. E. (2001) Telomere position effect in human cells, Science, 292, 2075–2077.CrossRefGoogle Scholar
  8. 8.
    Grunstein, M. (1997) Molecular model for telomeric hete–rochromatin in yeast, Curr. Opin. Cell Biol., 9, 383–387.CrossRefGoogle Scholar
  9. 9.
    Azzalin, C. M., Reichenbach, P., Khoriauli, L., Giulotto, E., and Lingner, J. (2007) Telomeric repeat containing RNA and RNA surveillance factors at mammalian chro–mosome ends, Science, 318, 798–801.CrossRefGoogle Scholar
  10. 10.
    Schoeftner, S., and Blasco, M. A. (2008) Developmentally regulated transcription of mammalian telomeres by DNA–dependent RNA polymerase II, Nat. Cell Biol., 10, 228–236.CrossRefGoogle Scholar
  11. 11.
    Danilevskaya, O. N., Traverse, K. L., Hogan, N. C., DeBaryshe, P. G., and Pardue, M. L. (1999) The two Drosophila telomeric transposable elements have very dif–ferent patterns of transcription, Mol. Cell Biol., 19, 873–881.CrossRefGoogle Scholar
  12. 12.
    Solovei, I., Gaginskaya, E. R., and Macgregor, H. C. (1994) The arrangement and transcription of telomere DNA sequences at the ends of lampbrush chromosomes of birds, Chromosome Res., 2, 460–470.CrossRefGoogle Scholar
  13. 13.
    Luke, B., and Lingner, J. (2009) TERRA: telomeric repeat–containing RNA, EMBO J., 28, 2503–2510.CrossRefGoogle Scholar
  14. 14.
    Azzalin, C. M., and Lingner, J. (2015) Telomere functions grounding on TERRA firma, Trends Cell Biol., 25, 29–36.CrossRefGoogle Scholar
  15. 15.
    Bah, A., Wischnewski, H., Shchepachev, V., and Azzalin, C. M. (2012) The telomeric transcriptome of Schizosaccharomyces pombe, Nucleic Acids Res., 40, 2995–3005.CrossRefGoogle Scholar
  16. 16.
    Luke, B., Panza, A., Redon, S., Iglesias, N., Li, Z., and Lingner, J. (2008) The Rat1p 5′ to 3′ exonuclease degrades telomeric repeat–containing RNA and promotes telomere elongation in Saccharomyces cerevisiae, Mol. Cell, 32, 465–477.CrossRefGoogle Scholar
  17. 17.
    Porro, A., Feuerhahn, S., Reichenbach, P., and Lingner, J. (2010) Molecular dissection of telomeric repeat–containing RNA biogenesis unveils the presence of distinct and multi–ple regulatory pathways, Mol. Cell Biol., 30, 4808–4817.CrossRefGoogle Scholar
  18. 18.
    Montero, J. J., Lopez de Silanes, I., Grana, O., and Blasco, M. A. (2016) Telomeric RNAs are essential to maintain telomeres, Nat. Commun., 7, 12534.CrossRefGoogle Scholar
  19. 19.
    De Silanes, I. L., Grana, O., De Bonis, M. L., Dominguez, O., Pisano, D. G., and Blasco, M. A. (2014) Identification of TERRA locus unveils a telomere protection role through asso–ciation to nearly all chromosomes, Nat. Commun., 5, 1–13.CrossRefGoogle Scholar
  20. 20.
    Nergadze, S. G., Farnung, B. O., Wischnewski, H., Khoriauli, L., Vitelli, V., Chawla, R., Giulotto, E., and Azzalin, C. M. (2009) CpG–island promoters drive tran–scription of human telomeres, RNA, 15, 2186–2194.CrossRefGoogle Scholar
  21. 21.
    Deng, Z., Wang, Z., Stong, N., Plasschaert, R., Moczan, A., Chen, H. S., Hu, S., Wikramasinghe, P., Davuluri, R. V., Bartolomei, M. S., Riethman, H., and Lieberman, P. M. (2012) A role for CTCF and cohesin in subtelomere chromatin organization, TERRA transcription, and telo–mere end protection, EMBO J., 31, 4165–4178.Google Scholar
  22. 22.
    Arnoult, N., Van Beneden, A., and Decottignies, A. (2012) Telomere length regulates TERRA levels through increased trimethylation of telomeric H3K9 and HP1alpha, Nat. Struct. Mol. Biol., 19, 948–956.CrossRefGoogle Scholar
  23. 23.
    Iglesias, N., Redon, S., Pfeiffer, V., Dees, M., Lingner, J., and Luke, B. (2011) Subtelomeric repetitive elements determine TERRA regulation by Rap1/Rif and Rap1/Sir complexes in yeast, EMBO Rep., 12, 587–593.CrossRefGoogle Scholar
  24. 24.
    Deng, Z., Norseen, J., Wiedmer, A., Riethman, H., and Lieberman, P. M. (2009) TERRA RNA binding to TRF2 facilitates heterochromatin formation and ORC recruit–ment at telomeres, Mol. Cell, 35, 403–413.CrossRefGoogle Scholar
  25. 25.
    Montero, J. J., Lopez–Silanes, I., Megias, D., Fraga, M., Castells–Garcia, A., and Blasco, M. A. (2018) TERRA recruitment of polycomb to telomeres is essential for his–tone trymethylation marks at telomeric heterochromatin, Nat. Commun., 9, 1548.CrossRefGoogle Scholar
  26. 26.
    Wang, X., Goodrich, K. J., Gooding, A. R., Naeem, H., Archer, S., Paucek, R. D., Youmans, D. T., Cech, T. R., and Davidovich, C. (2017) Targeting of polycomb repres–sive complex 2 to RNA by short repeats of consecutive gua–nines, Mol. Cell, 65, 1056–1067.e5.CrossRefGoogle Scholar
  27. 27.
    Porro, A., Feuerhahn, S., Delafontaine, J., Riethman, H., Rougemont, J., and Lingner, J. (2014) Functional charac–terization of the TERRA transcriptome at damaged telo–meres, Nat. Commun., 5, 5379.CrossRefGoogle Scholar
  28. 28.
    Chu, H. P., Cifuentes–Rojas, C., Kesner, B., Aeby, E., Lee, H. G., Wei, C., Oh, H. J., Boukhali, M., Haas, W., and Lee, J. T. (2017) TERRA RNA antagonizes ATRX and pro–tects telomeres, Cell, 170, 86–101.e16.CrossRefGoogle Scholar
  29. 29.
    Lopez de Silanes, I., Grana, O., De Bonis, M. L., Dominguez, O., Pisano, D. G., and Blasco, M. A. (2014) Identification of TERRA locus unveils a telomere protec–tion role through association to nearly all chromosomes, Nat. Commun., 5, 4723.CrossRefGoogle Scholar
  30. 30.
    Balk, B., Maicher, A., Dees, M., Klermund, J., Luke–Glaser, S., Bender, K., and Luke, B. (2013) Telomeric RNA–DNA hybrids affect telomere–length dynamics and senescence, Nat. Struct. Mol. Biol., 20, 1199–1205.CrossRefGoogle Scholar
  31. 31.
    Yu, T. Y., Kao, Y. W., and Lin, J. J. (2014) Telomeric tran–scripts stimulate telomere recombination to suppress senes–cence in cells lacking telomerase, Proc. Natl. Acad. Sci. USA, 111, 3377–3382.CrossRefGoogle Scholar
  32. 32.
    Arora, R., and Azzalin, C. M. (2015) Telomere elongation chooses TERRA ALTernatives, RNA Biol., 12, 938–941.CrossRefGoogle Scholar
  33. 33.
    Scheibe, M., Arnoult, N., Kappei, D., Buchholz, F., Decottignies, A., Butter, F., and Mann, M. (2013) Quantitative interaction screen of telomeric repeat–con–taining RNA reveals novel TERRA regulators, Genome Res., 23, 2149–2157.CrossRefGoogle Scholar
  34. 34.
    Lopez de Silanes, I., Stagno d’Alcontres, M., and Blasco, M. A. (2010) TERRA transcripts are bound by a complex array of RNA–binding proteins, Nat. Commun., 1, 33.Google Scholar
  35. 35.
    Flynn, R. L., Centore, R. C., O’Sullivan, R. J., Rai, R., Tse, A., Songyang, Z., Chang, S., Karlseder, J., and Zou, L. (2011) TERRA and hnRNPA1 orchestrate an RPA–to–POT1 switch on telomeric single–stranded DNA, Nature, 471, 532–536.CrossRefGoogle Scholar
  36. 36.
    Beishline, K., Vladimirova, O., Tutton, S., Wang, Z., Deng, Z., and Lieberman, P. M. (2017) CTCF driven TERRA transcription facilitates completion of telomere DNA repli–cation, Nat. Commun., 8, 2114.CrossRefGoogle Scholar
  37. 37.
    Redon, S., Reichenbach, P., and Lingner, J. (2010) The non–coding RNA TERRA is a natural ligand and direct inhibitor of human telomerase, Nucleic Acids Res., 38, 5797–5806.CrossRefGoogle Scholar
  38. 38.
    Schoeftner, S., and Blasco, M. A. (2009) A “higher order”’ of telomere regulation: telomere heterochromatin and telomeric RNAs, EMBO J., 28, 2323–2336.CrossRefGoogle Scholar
  39. 39.
    Redon, S., Zemp, I., and Lingner, J. (2013) A three–state model for the regulation of telomerase by TERRA and hnRNPA1, Nucleic Acids Res., 41, 9117–9128.CrossRefGoogle Scholar
  40. 40.
    Farnung, B. O., Brun, C. M., Arora, R., Lorenzi, L. E., and Azzalin, C. M. (2012) Telomerase efficiently elongates highly transcribing telomeres in human cancer cells, PLoS One, 7, e35714.CrossRefGoogle Scholar
  41. 41.
    Cusanelli, E., Romero, C. A., and Chartrand, P. (2013) Telomeric noncoding RNA TERRA is induced by telomere shortening to nucleate telomerase molecules at short telomeres, Mol. Cell, 51, 780–791.CrossRefGoogle Scholar
  42. 42.
    Graf, M., Bonetti, D., Lockhart, A., Serhal, K., Kellner, V., Maicher, A., Jolivet, P., Teixeira, M. T., and Luke, B. (2017) Telomere length determines TERRA and R–loop regulation through the cell cycle, Cell, 170, 72–85.e14.CrossRefGoogle Scholar
  43. 43.
    Yehezkel, S., Segev, Y., Viegas–Pequignot, E., Skorecki, K., and Selig, S. (2008) Hypomethylation of subtelomeric regions in ICF syndrome is associated with abnormally short telomeres and enhanced transcription from telomeric regions, Hum. Mol. Genet., 17, 2776–2789.CrossRefGoogle Scholar
  44. 44.
    Maicher, A., Kastner, L., Dees, M., and Luke, B. (2012) Deregulated telomere transcription causes replication–dependent telomere shortening and promotes cellular senescence, Nucleic Acids Res., 40, 6649–6659.CrossRefGoogle Scholar
  45. 45.
    Pfeiffer, V., and Lingner, J. (2012) TERRA promotes telomere shortening through exonuclease 1–mediated resection of chromosome ends, PLoS Genet., 8, e1002747.CrossRefGoogle Scholar
  46. 46.
    Moravec, M., Wischnewski, H., Bah, A., Hu, Y., Liu, N., Lafranchi, L., King, M. C., and Azzalin, C. M. (2016) TERRA promotes telomerase–mediated telomere elongation in Schizosaccharomyces pombe, EMBO Rep., 17, 999–1012.CrossRefGoogle Scholar
  47. 47.
    Caslini, C., Connelly, J. A., Serna, A., Broccoli, D., and Hess, J. L. (2009) MLL associates with telomeres and reg–ulates telomeric repeat–containing RNA transcription, Mol. Cell Biol., 29, 4519–4526.CrossRefGoogle Scholar
  48. 48.
    Pardue, M. L., and DeBaryshe, P. G. (2008) Drosophila telomeres: a variation on the telomerase theme, Fly (Austin), 2, 101–110.CrossRefGoogle Scholar
  49. 49.
    Danilevskaya, O. N., Arkhipova, I. R., Traverse, K. L., and Pardue, M. L. (1997) Promoting in tandem: the promoter for telomere transposon HeT–A and implications for the evolution of retroviral LTRs, Cell, 88, 647–655.CrossRefGoogle Scholar
  50. 50.
    Radion, E., Ryazansky, S., Akulenko, N., Rozovsky, Y., Kwon, D., Morgunova, V., Olovnikov, I., and Kalmykova, A. (2017) Telomeric retrotransposon HeT–A contains a bidirectional promoter that initiates divergent transcription of piRNA precursors in Drosophila germline, J. Mol. Biol., 429, 3280–3289.CrossRefGoogle Scholar
  51. 51.
    Shpiz, S., Kwon, D., Rozovsky, Y., and Kalmykova, A. (2009) rasiRNA pathway controls antisense expression of Drosophila telomeric retrotransposons in the nucleus, Nucleic Acids Res., 37, 268–278.CrossRefGoogle Scholar
  52. 52.
    Maxwell, P. H., Belote, J. M., and Levis, R. W. (2006) Identification of multiple transcription initiation, polyadenylation, and splice sites in the Drosophila melanogaster TART family of telomeric retrotransposons, Nucleic Acids Res., 34, 5498–5507.CrossRefGoogle Scholar
  53. 53.
    Casacuberta, E. (2017) Drosophila: retrotransposons mak–ing up telomeres, Viruses, 9, E192.Google Scholar
  54. 54.
    Cheng, L., Cui, M., and Rong, Y. S. (2018) MTV sings jubilation for telomere biology in Drosophila, Fly (Austin), 12, 41–45.CrossRefGoogle Scholar
  55. 55.
    Raffa, G. D., Ciapponi, L., Cenci, G., and Gatti, M. (2011) Terminin: a protein complex that mediates epige–netic maintenance of Drosophila telomeres, Nucleus, 2, 383–391.CrossRefGoogle Scholar
  56. 56.
    Perrini, B., Piacentini, L., Fanti, L., Altieri, F., Chichiarelli, S., Berloco, M., Turano, C., Ferraro, A., and Pimpinelli, S. (2004) HP1 controls telomere capping, telomere elongation, and telomere silencing by two differ–ent mechanisms in Drosophila, Mol. Cell, 15, 467–476.CrossRefGoogle Scholar
  57. 57.
    Savitsky, M., Kravchuk, O., Melnikova, L., and Georgiev, P. (2002) Heterochromatin protein 1 is involved in control of telomere elongation in Drosophila melanogaster, Mol. Cell Biol., 22, 3204–3218.CrossRefGoogle Scholar
  58. 58.
    Kordyukova, M., Morgunova, V., Olovnikov, I., Komarov, P. A., Mironova, A., Olenkina, O. M., and Kalmykova, A. (2018) Subcellular localization and Egl–mediated transport of telomeric retrotransposon HeT–A ribonucleoprotein particles in the Drosophila germline and early embryogene–sis, PLoS One, 13, e0201787.Google Scholar
  59. 59.
    Zhang, L., Beaucher, M., Cheng, Y., and Rong, Y. S. (2014) Coordination of transposon expression with DNA replication in the targeting of telomeric retrotransposons in Drosophila, EMBO J., 33, 1148–1158.CrossRefGoogle Scholar
  60. 60.
    Rashkova, S., Karam, S. E., Kellum, R., and Pardue, M. L. (2002) Gag proteins of the two Drosophila telomeric retro–transposons are targeted to chromosome ends, J. Cell Biol., 159, 397–402.CrossRefGoogle Scholar
  61. 61.
    Lopez–Panades, E., Gavis, E. R., and Casacuberta, E. (2015) Specific localization of the Drosophila telomere transposon proteins and RNAs, give insight in their behav–ior, control and telomere biology in this organism, PLoS One, 10, e0128573.Google Scholar
  62. 62.
    Silva–Sousa, R., Lopez–Panades, E., Pineyro, D., and Casacuberta, E. (2012) The chromosomal proteins JIL–1 and Z4/Putzig regulate the telomeric chromatin in Drosophila melanogaster, PLoS Genet., 8, e1003153.CrossRefGoogle Scholar
  63. 63.
    Musaro, M., Ciapponi, L., Fasulo, B., Gatti, M., and Cenci, G. (2008) Unprotected Drosophila melanogaster telomeres activate the spindle assembly checkpoint, Nat. Genet., 40, 362–366.CrossRefGoogle Scholar
  64. 64.
    Doksani, Y., and de Lange, T. (2014) The role of double–strand break repair pathways at functional and dysfunction–al telomeres, Cold Spring Harb. Perspect. Biol., 6, a016576.Google Scholar
  65. 65.
    Titen, S. W., and Golic, K. G. (2008) Telomere loss pro–vokes multiple pathways to apoptosis and produces genom–ic instability in Drosophila melanogaster, Genetics, 180, 1821–1832.CrossRefGoogle Scholar
  66. 66.
    Bi, X., Wei, S. C., and Rong, Y. S. (2004) Telomere protec–tion without a telomerase; the role of ATM and Mre11 in Drosophila telomere maintenance, Curr. Biol., 14, 1348–1353.CrossRefGoogle Scholar
  67. 67.
    Capkova, R., Mason, J. M., and Archer, T. K. (2008) HP1 is distributed within distinct chromatin domains at Drosophila telomeres, Genetics, 180, 121–131.CrossRefGoogle Scholar
  68. 68.
    Wang, S. H., and Elgin, S. C. (2011) Drosophila Piwi func–tions downstream of piRNA production mediating a chro–matin–based transposon silencing mechanism in female germ line, Proc. Natl. Acad. Sci. USA, 108, 21164–21169.CrossRefGoogle Scholar
  69. 69.
    Savitsky, M., Kwon, D., Georgiev, P., Kalmykova, A., and Gvozdev, V. (2006) Telomere elongation is under the con–trol of the RNAi–based mechanism in the Drosophila germline, Genes Dev., 20, 345–354.CrossRefGoogle Scholar
  70. 70.
    Vagin, V. V., Klenov, M. S., Kalmykova, A. I., Stolyarenko, A. D., Kotelnikov, R. N., and Gvozdev, V. A. (2004) The RNA interference proteins and vasa locus are involved in the silencing of retrotransposons in the female germline of Drosophila melanogaster, RNA Biol., 1, 54–58.CrossRefGoogle Scholar
  71. 71.
    Morgunova, V., Akulenko, N., Radion, E., Olovnikov, I., Abramov, Y., Olenina, L. V., Shpiz, S., Kopytova, D. V., Georgieva, S. G., and Kalmykova, A. (2015) Telomeric repeat silencing in germ cells is essential for early develop–ment in Drosophila, Nucleic Acids Res., 43, 8762–8773.CrossRefGoogle Scholar
  72. 72.
    Radion, E., Morgunova, V., Ryazansky, S., Akulenko, N., Lavrov, S., Abramov, Y., Komarov, P. A., Glukhov, S. I., Olovnikov, I., and Kalmykova, A. (2018) Key role of piRNAs in telomeric chromatin maintenance and telomere nuclear positioning in Drosophila germline, Epigenetics Chromatin, 11, 40.CrossRefGoogle Scholar
  73. 73.
    Dienstbier, M., Boehl, F., Li, X., and Bullock, S. L. (2009) Egalitarian is a selective RNA–binding protein linking mRNA localization signals to the dynein motor, Genes Dev., 23, 1546–1558.CrossRefGoogle Scholar
  74. 74.
    Mach, J. M., and Lehmann, R. (1997) An Egalitarian–BicaudalD complex is essential for oocyte specification and axis determination in Drosophila, Genes Dev., 11, 423–435.CrossRefGoogle Scholar
  75. 75.
    Navarro, C., Puthalakath, H., Adams, J. M., Strasser, A., and Lehmann, R. (2004) Egalitarian binds dynein light chain to establish oocyte polarity and maintain oocyte fate, Nat. Cell Biol., 6, 427–435.CrossRefGoogle Scholar
  76. 76.
    Klattenhoff, C., Bratu, D. P., McGinnis–Schultz, N., Koppetsch, B. S., Cook, H. A., and Theurkauf, W. E. (2007) Drosophila rasiRNA pathway mutations disrupt embryonic axis specification through activation of an ATR/Chk2 DNA damage response, Dev. Cell, 12, 45–55.CrossRefGoogle Scholar
  77. 77.
    Rouget, C., Papin, C., Boureux, A., Meunier, A. C., Franco, B., Robine, N., Lai, E. C., Pelisson, A., and Simonelig, M. (2010) Maternal mRNA deadenylation and decay by the piRNA pathway in the early Drosophila embryo, Nature, 467, 1128–1132.CrossRefGoogle Scholar
  78. 78.
    Chen, Y., Pane, A., and Schupbach, T. (2007) Cutoff and aubergine mutations result in retrotransposon upregulation and checkpoint activation in Drosophila, Curr. Biol., 17, 637–642.CrossRefGoogle Scholar
  79. 79.
    Pane, A., Wehr, K., and Schupbach, T. (2007) Zucchini and squash encode two putative nucleases required for rasiRNA production in the Drosophila germline, Dev. Cell, 12, 851–862.CrossRefGoogle Scholar
  80. 80.
    Khadaroo, B., Teixeira, M. T., Luciano, P., Eckert–Boulet, N., Germann, S. M., Simon, M. N., Gallina, I., Abdallah, P., Gilson, E., Geli, V., and Lisby, M. (2009) The DNA damage response at eroded telomeres and tethering to the nuclear pore complex, Nat. Cell Biol., 11, 980–987.CrossRefGoogle Scholar
  81. 81.
    Wanat, J. J., Logsdon, G. A., Driskill, J. H., Deng, Z., Lieberman, P. M., and Johnson, F. B. (2018) TERRA and the histone methyltransferase Dot1 cooperate to regulate senescence in budding yeast, PLoS One, 13, e0195698.CrossRefGoogle Scholar
  82. 82.
    Ye, J., Renault, V. M., Jamet, K., and Gilson, E. (2014) Transcriptional outcome of telomere signalling, Nat. Rev. Genet., 15, 491–503.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Institute of Molecular GeneticsRussian Academy of SciencesMoscowRussia

Personalised recommendations