Advertisement

Biochemistry (Moscow)

, Volume 84, Issue 2, pp 119–136 | Cite as

Computer Design of Low-Molecular-Weight Inhibitors of Coagulation Factors

  • A. S. Kabankin
  • E. I. Sinauridze
  • E. N. Lipets
  • F. I. AtaullakhanovEmail author
Review
  • 7 Downloads

Abstract

The review discusses main approaches to searching for new low-molecular-weight inhibitors of coagulation factors IIa, Xa, IXa, and XIa and the results of such studies conducted from 2015 to 2018. For each of these factors, several inhibitors with IC50 < 10 nM have been found, some of which are now tested in clinical trials. However, none of the identified inhibitors meets the requirements for an “ideal” anticoagulant, so further studies are required.

Keywords

anticoagulant low-molecular-weight inhibitor coagulation factor computer molecular design molecular docking 

Abbreviations

ADME

absorption, distribution, metabolism, excretion

ADMET (ADME/Tox)

absorption, distribution, metabolism, excretion, toxicity

ATIII

antithrombin III

CoMFA

comparative molecular field analysis

CoMSIA

com-parative molecular similarity indices analysis

DOACs

direct oral anticoagulants

DTIs

direct thrombin inhibitors

LBDD

ligand-based drug design

PASS

prediction of activity spectra for substances

QSAR

quantitative structure-activity relation-ships

SBDD

structure-based drug design

TF

tissue factor

TFPI

tissue factor pathway inhibitor

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Panteleev, M. A., and Ataullahanov, F. I. (2008) Blood coagulation: biochemical basics, Klin. Onkogematol., 1, 50–62.Google Scholar
  2. 2.
    Panteleev, M. A., Vasil’ev, S. A., Sinauridze, E. I., Vorob’ev, A. I., and Ataullakhanov, F. I. (2012) Practical Coaguology [in Russian], Prakticheskaya Meditsina, Moscow.Google Scholar
  3. 3.
    Panteleev, M., Kotova, Ya., and Tokarev, A. (2008) Mechanisms regulating blood coagulation, Terap. Arkhiv, 7, 88–91.Google Scholar
  4. 4.
    Sinauridze, E. I., Panteleev, M. A., and Ataullakhanov, F. I. (2012) Anticoagulant therapy: basic principles, classic approaches and recent developments, Blood Coagul. Fibrinolysis, 23, 482–493.CrossRefGoogle Scholar
  5. 5.
    Broussalis, E., Anna, W., Trinka, E., Mutzenbach, S., and Killer, M. (2014) Latest developments in anticoagulant drug discovery, Drug Discov. Today, 19, 921–935.CrossRefGoogle Scholar
  6. 6.
    Ahrens, I., Peter, K., Lip, G. Y. H., and Bode, C. (2012) Development and clinical applications of novel oral antico–agulants. Part I. Clinically approved drugs, Discov. Med., 13, 433–443.Google Scholar
  7. 7.
    Roca, B., and Roca, M. (2015) The new oral anticoagu–lants: reasonable alternatives to warfarin, Cleve Clin. J. Med., 82, 847–854.CrossRefGoogle Scholar
  8. 8.
    Adcock, D. M., and Gosselin, R. (2015) Direct oral anti–coagulants (DOACs) in the laboratory: 2015 review, Thromb. Res., 136, 7–12.CrossRefGoogle Scholar
  9. 9.
    Mekaj, Y. H., Mekaj, A. Y., Duci, S. B., and Miftari, E. I. (2015) New oral anticoagulants: their advantages and dis–advantages compared with vitamin K antagonists in the prevention and treatment of patients with thromboembolic events, Ther. Clin. Risk. Manag., 11, 967–977.CrossRefPubMedCentralGoogle Scholar
  10. 10.
    Gomez–Outes, A., Suarez–Gea, M. L., Lecumberri, R., Terleira–Fernandez, A. I., and Vargas–Castrillon, E. (2015) Direct–acting oral anticoagulants: pharmacology, indica–tions, management, and future perspectives, Eur. J. Haematol., 95, 389–404.CrossRefGoogle Scholar
  11. 11.
    Sinauridze, E., Vuymo, T., and Ataullakhanov, F. (2017) Dabigatran etexilate: a novel oral coagulant, Vopr. Gematol./Onkol. Immunol. Pediatr., 16, 1–15.Google Scholar
  12. 12.
    Joppa, S. A., Salciccioli, J., Adamski, J., Patel, S., Wysokinski, W., McBane, R., Al–Saffar, F., Esser, H., and Shamoun, F. (2018) A practical review of the emerging direct anticoagulants, laboratory monitoring, and reversal agents, J. Clin. Med., 7, E29.Google Scholar
  13. 13.
    Pollack, C. V., Reilly, P. A. (2017) Idarucizumab for dabigatran reversal–full cohort analysis, N. Engl. J. Med., 377, 431–441.CrossRefGoogle Scholar
  14. 14.
    Hung, C.–L., and Chen, C.–C. (2014) Computational approaches for drug discovery, Drug Dev. Res., 75, 412–418.CrossRefGoogle Scholar
  15. 15.
    Lill, M. (2013) Virtual screening in drug design, Methods Mol. Biol., 993, 1–12.CrossRefGoogle Scholar
  16. 16.
    Baron, R. (2012) Computational Drug Discovery and Design, Springer New York, NY.CrossRefGoogle Scholar
  17. 17.
    Khel’t’e, Kh.–D., Zippl’, V., Ron’yan, D., and Fol’kers, G. (2015) Molecular Modeling. Theory and Practice [in Russian], BINOM. Laboratoriya Znanii, Moscow.Google Scholar
  18. 18.
    De Ruyck, J., Brysbaert, G., Blossey, R., and Lensink, M. F. (2016) Molecular docking as a popular tool in drug design, an in silico travel, Adv. Appl. Bioinform. Chem., 9, 1–11.PubMedCentralGoogle Scholar
  19. 19.
    Chen, Y.–C. (2015) Beware of docking! Trends Pharmacol. Sci., 36, 78–95.CrossRefGoogle Scholar
  20. 20.
    Sulimov, V. B., and Sulimov, A. V. (2017) Docking: Molecular Modeling for Drug Design [in Russian], IIntell, Moscow.Google Scholar
  21. 21.
    Klimovich, P. V., Shirts, M. R., and Mobley, D. L. (2015) Guidelines for the analysis of free energy calculations, J. Comput. Aided. Mol. Des., 29, 397–411.CrossRefPubMedCentralGoogle Scholar
  22. 22.
    Sulimov, A. V., Kutov, D. C., Katkova, E. V., Ilin, I. S., and Sulimov, V. B. (2017) New generation of docking programs: supercomputer validation of force fields and quantum–chemical methods for docking, J. Mol. Graph. Model., 78, 139–147.CrossRefGoogle Scholar
  23. 23.
    Raevskiy, O. (2013) Structure–Based Properties of Chemical Compounds and Drugs [in Russian], Dobrsovet, KDU, Moscow.Google Scholar
  24. 24.
    Raevskiy, O. (2015) Modeling Structure–Property Relationship [in Russian], Dobrsovet, KDU, Moscow.Google Scholar
  25. 25.
    Filimonov, D., and Poroykov, V. (2006) Predicting a spec–trum of biological properties in organic compounds, Ross. Khim. Zh., 50, 66–75.Google Scholar
  26. 26.
    Poroykov, V., Filimonov, D., Gloriozova, T., Lagunin, A., Druzhilovskiy, D., and Stepanchikova, A. (2009) A com–puter–aided prediction of structure–activty relationship: virtual chemogenomics, Inform. Vestnik VOGiS, 13, 137–142.Google Scholar
  27. 27.
    Filimonov, D. A., Lagunin, A. A., Gloriozova, T. A., Rudik, A. V., Druzhilovskiy, D. S., Pogodin, P. V., and Poroykov, V. V. (2014) Prediction of structure–activty relationship by using PASS online web resource, Khim. Geterotsikl. Soedin., 3, 483–499.Google Scholar
  28. 28.
    Lipinski, C. A., Lombardo, F., Dominy, B. W., and Feeney, P. J. (2001) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings, Adv. Drug Deliv. Rev., 46, 3–26.CrossRefGoogle Scholar
  29. 29.
    Shen, J., Cheng, F., Xu, Y., Li, W., and Tang, Y. (2010) Estimation of ADME properties with substructure pattern recognition, J. Chem. Inf. Model., 50, 1034–1041.CrossRefGoogle Scholar
  30. 30.
    Khakar, P. S. (2010) Two–dimensional (2D) in silico models for absorption, distribution, metabolism, excretion and toxicity (ADME/T) in drug discovery, Curr. Top. Med. Chem., 10, 116–126.Google Scholar
  31. 31.
    Kujawski, J., Bernard, M. K., Janusz, A., and Kuzma, W. (2012) Prediction of log P: ALOGPS application in medic–inal chemistry education, J. Chem. Educ., 89, 64–67.CrossRefGoogle Scholar
  32. 32.
    Matter, H., and Schmider, W. (2006) In–silico ADME mod–elling, in Drug Discovery and Evaluation, Safety and Pharmacokinetic Assays (Vogel, H. G., ed.), Springer, Heidelberg, pp. 409–436.Google Scholar
  33. 33.
    Wang, Y., Xing, J., Xu, Y., Zhou, N., Peng, J., Xiong, Z., Liu, X., Luo, X., Luo, C., Chen, K., Zheng, M., and Jiang, H. (2015) In silico ADME/T modelling for rational drug design, .Q Rev. Biophys., 48, 488–515.CrossRefGoogle Scholar
  34. 34.
    Obst, U., Banner, D. W., Weber, L., and Diederich, F. (1997) Molecular recognition at the thrombin active site: structure–based design and synthesis of potent and selective thrombin inhibitors and the X–ray crystal structures of two thrombin–inhibitor complexes, Chem. Biol., 4, 287–295.CrossRefGoogle Scholar
  35. 35.
    Kong, Y., Chen, H., Wang, Y.–Q., Meng, L., and Wei, J.–F. (2014) Direct thrombin inhibitors: patents 2002–2012 (review), Mol. Med. Rep., 9, 1506–1514.CrossRefGoogle Scholar
  36. 36.
    He, L.–W., Dai, W.–C., and Li, N.–G. (2015) Development of orally active thrombin inhibitors for the treatment of thrombotic disorder diseases, Molecules, 20, 11046–11062.CrossRefPubMedCentralGoogle Scholar
  37. 37.
    Mena–Ulecia, K., Tiznado, W., and Caballero, J. (2015) Study of the differential activity of thrombin inhibitors using docking, QSAR, molecular dynamics, and MM–GBSA, PLoS One, 10, e0142774.Google Scholar
  38. 38.
    Sinauridze, E. I., Romanov, A. N., Gribkova, I. V., Kondakova, O. A., Surov, S. S., Gorbatenko, A. S., Butylin, A. A., Monakov, M. Y., Bogolyubov, A. A., Kuznetsov, Y. V., Sulimov, V. B., and Ataullakhanov, F. I. (2011) New synthetic thrombin inhibitors: molecular design and experimental verification, PLoS One, 6, e19969.Google Scholar
  39. 39.
    Lu, T., Tomczuk, B., Illig, C. R., Bone, R., Murphy, L., Spurlino, J., Salemme, F. R., and Soll, R. M. (1998) In vitro evaluation and crystallographic analysis of a new class of selective, non–amide–based thrombin inhibitors, Bioorg. Med. Chem. Lett., 8, 1595–1600.CrossRefGoogle Scholar
  40. 40.
    Hagmann, W. K. (2008) The many roles for fluorine in medicinal chemistry, J. Med. Chem., 51, 4359–4369.CrossRefGoogle Scholar
  41. 41.
    Li, M., and Ren, Y. (2015) Synthesis and biological evalu–ation of some new 2,5–substituted 1–ethyl–1H–benzoimida–zole fluorinated derivatives as direct thrombin inhibitors, Arch. Pharm. (Weinheim), 348, 353–365.CrossRefGoogle Scholar
  42. 42.
    Chen, H., and Ren, Y. (2015) Design, synthesis, and anti–thrombotic evaluation of some novel fluorinated thrombin inhibitor derivatives, Arch. Pharm. (Weinheim), 348, 408–420.CrossRefGoogle Scholar
  43. 43.
    Chen, D., Wang, S., Diao, X., Zhu, Q., Shen, H., Han, X., Wang, Y., Gong, G., and Xu, Y. (2015) Design, synthesis and antithrombotic evaluation of novel dabigatran etexilate analogs, a new series of non–peptides thrombin inhibitors, Bioorg. Med. Chem., 23, 7405–7416.CrossRefGoogle Scholar
  44. 44.
    Chen, D., Shi, J., Liu, J., Zhang, X., Deng, X., Yang, Y., Cui, S., Zhu, Q., Gong, G., and Xu, Y. (2017) Design, syn–thesis and antithrombotic evaluation of novel non–peptide thrombin inhibitors, Bioorg. Med. Chem., 25, 458–470.CrossRefGoogle Scholar
  45. 45.
    Lee, W., Lee, S., Choi, J., Park, J.–H., Kim, K.–M., Jee, J.–G., and Bae, J.–S. (2017) Antithrombotic properties of JJ1, a potent and novel thrombin inhibitor, Sci. Rep., 7, 14862.CrossRefPubMedCentralGoogle Scholar
  46. 46.
    Wang, X., Zhang, Y., Yang, Y., Wu, X., Fan, H., and Qiao, Y. (2017) Identification of berberine as a direct thrombin inhibitor from traditional Chinese medicine through struc–tural, functional and binding studies, Sci. Rep., 7, 44040.CrossRefPubMedCentralGoogle Scholar
  47. 47.
    Levy, J. H., Spyropoulos, A. C., Samama, C. M., and Douketis, J. (2014) Direct oral anticoagulants: new drugs and new concepts, JACC Cardiovasc. Interv., 7, 1333–1351.CrossRefGoogle Scholar
  48. 48.
    Patel, N. R., Patel, D. V., Murumkar, P. R., and Yadav, M. R. (2016) Contemporary developments in the discovery of selective factor Xa inhibitors: a review, Eur. J. Med. Chem., 121, 671–698.CrossRefGoogle Scholar
  49. 49.
    Sulimov, V. B., Gribkova, I. V., Kochugaeva, M. P., Katkova, E. V., Sulimov, A. V., Kutov, D. C., Shikhaliev, K. S., Medvedeva, S. M., Krysin, M. Y., Sinauridze, E. I., and Ataullakhanov, F. I. (2015) Application of molecular mod–eling to development of new factor Xa inhibitors, Biomed. Res. Int., 2015, 120802.CrossRefPubMedCentralGoogle Scholar
  50. 50.
    Yang, J., Su, G., Ren, Y., and Chen, Y. (2015) Synthesis of 3,4–diaminobenzoyl derivatives as factor Xa inhibitors, Eur. J. Med. Chem., 101, 41–51.CrossRefGoogle Scholar
  51. 51.
    Ishihara, T., Koga, Y., Iwatsuki, Y., and Hirayama, F. (2015) Identification of potent orally active factor Xa inhibitors based on conjugation strategy and application of predictable fragment recommender system, Bioorg. Med. Chem., 23, 277–289.CrossRefGoogle Scholar
  52. 52.
    Xu, C., and Ren, Y. (2015) Molecular modeling studies of [6,6,5] tricyclic fused oxazolidinones as fXa inhibitors using 3D–QSAR, topomer CoMFA, molecular docking and molecular dynamics simulations, Bioorg. Med. Chem. Lett., 25, 4522–4528.CrossRefGoogle Scholar
  53. 53.
    Wang, Y., Sun, X., Yang, D., Guo, Z., Fan, X., Nie, M., Zhang, F., Liu, Y., Li, Y., Wang, Y., Gong, P., and Liu, Y. (2016) Design, synthesis, and structure–activity relation–ship of novel and effective apixaban derivatives as FXa inhibitors containing 1,2,4–triazole/pyrrole derivatives as P2 binding element, Bioorg. Med. Chem., 24, 5646–5661.CrossRefGoogle Scholar
  54. 54.
    Xing, J., Yang, L., Yang, Y., Zhao, L., Wei, Q., Zhang, J., Zhou, J., and Zhang, H. (2017) Design, synthesis and bio–logical evaluation of novel 2,3–dihydroquinazolin–4(1H)–one derivatives as potential fXa inhibitors, Eur. J. Med. Chem., 125, 411–422.CrossRefGoogle Scholar
  55. 55.
    Pu, Y., Liu, H., Zhou, Y., Peng, J., Li, Y., Li, P., Li, Y., Liu, X., and Zhang, L. (2017) In silico discovery of novel FXa inhibitors by pharmacophore modeling and molecular docking, Nat. Products Bioprospect., 7, 249–256.CrossRefGoogle Scholar
  56. 56.
    Lagos, C. F., Segovia, G. F., Nunez–Navarro, N., Faundez, M. A., and Zacconi, F. C. (2017) Novel FXa inhibitor iden–tification through integration of ligand–and structure–based approaches, Molecules, 22, E1588.Google Scholar
  57. 57.
    Sun, X., Hong, Z., Liu, M., Guo, S., Yang, D., Wang, Y., Lan, T., Gao, L., Qi, H., Gong, P., and Liu, Y. (2017) Design, synthesis, and biological activity of novel tetrahy–dropyrazolopyridone derivatives as FXa inhibitors with potent anticoagulant activity, Bioorg. Med. Chem., 25, 2800–2810.CrossRefGoogle Scholar
  58. 58.
    Wang, W., Yuan, J., Fu, X., Meng, F., Zhang, S., Xu, W., Xu, Y., and Huang, C. (2016) Novel anthranilamide–based FXa inhibitors: drug design, synthesis and biological evalu–ation, Molecules, 21, 491.CrossRefPubMedCentralGoogle Scholar
  59. 59.
    Hu, X., Xiao, Y., Yu, C., Zuo, Y., Yang, W., Wang, X., Gu, B., and Li, J. (2018) Characterization of a novel selective factor Xa inhibitor, DJT06001, which reduces thrombus formation with low risk of bleeding, Eur. J. Pharmacol., 825, 85–91.Google Scholar
  60. 60.
    Smiley, D. A., and Becker, R. C. (2014) Factor IXa as a tar–get for anticoagulation in thrombotic disorders and condi–tions, Drug Discov. Today, 19, 1445–1453.CrossRefGoogle Scholar
  61. 61.
    Choudhari, P., and Bhatia, M. (2012) 3D QSAR, pharma–cophore identification studies on series of 4–substituted benzothiophene analogs as factor IXa inhibitors, Pharmacophore, 3, 189–198.Google Scholar
  62. 62.
    Wang, S., Beck, R., Blench, T., Burd, A., Buxton, S., Malic, M., Ayele, T., Shaikh, S., Chahwala, S., Chander, C., Holland, R., Merette, S., Zhao, L., Blackney, M., and Watts, A. (2010) Studies of benzothiophene template as potent factor IXa (FIXa) inhibitors in thrombosis, J. Med. Chem., 53, 1465–1472.CrossRefGoogle Scholar
  63. 63.
    Wang, S., Beck, R., Burd, A., Blench, T., Marlin, F., Ayele, T., Buxton, S., Dagostin, C., Malic, M., Joshi, R., Barry, J., Sajad, M., Cheung, C., Shaikh, S., Chahwala, S., Chander, C., Baumgartner, C., Holthoff, H. P., Murray, E., Blackney, M., and Giddings, A. (2010) Structure based drug design: development of potent and selective factor IXa (FIXa) inhibitors, J. Med. Chem., 53, 1473–1482.CrossRefGoogle Scholar
  64. 64.
    Parker, D. L., Jr., Walsh, S., Li, B., Kim, E., Sharipour, A., Smith, C., Chen, Y. H., Berger, R., Harper, B., Zhang, T., Park, M., Shu, M., Wu, J., Xu, J., Dewnani, S., Sherer, E. C., Hruza, A., Reichert, P., Geissler, W., Sonatore, L., Ellsworth, K., Balkovec, J., Greenlee, W., and Wood, H. B. (2015) Rapid development of two factor IXa inhibitors from hit to lead, Bioorg. Med. Chem. Lett., 25, 2321–2325.CrossRefGoogle Scholar
  65. 65.
    Zhang, T., Andre, P., Bateman, T. J., Chen, Y.–H. (2015) Development of a novel class of potent and selec–tive FIXa inhibitors, Bioorg. Med. Chem. Lett., 25, 4945–4949.CrossRefGoogle Scholar
  66. 66.
    Meng, D., Andre, P., Bateman, T. J., Berger, R., Chen, Y. H., Desai, K., Dewnani, S., Ellsworth, K., Feng, D., Geissler, W. M., Guo, L., Hruza, A., Jian, T., Li, H., Metzger, J., Parker, D. L., Reichert, P., Sherer, E. C., Smith, C. J., Sonatore, L. M., Tschirret–Guth, R., Wu, J., Xu, J., Zhang, T., Campeau, L. C., Orr, R., Poirier, M., McCabe–Dunn, J., Araki, K., Nishimura, T., Sakurada, I., Hirabayashi, T., and Wood, H. B. (2015) Development of a novel tricyclic class of potent and selective FIXa inhibitors, Bioorg. Med. Chem. Lett., 25, 5437–5443.CrossRefGoogle Scholar
  67. 67.
    Gao, J.–S., Tong, X.–P., Chang, Y.–Q., He, Y.–X., Mei, Y.–D., Tan, P.–H., Guo, J.–L., Liao, G.–C., Xiao, G.–K., Chen, W.–M., Zhou, S.–F., and Sun, P.–H. (2015) Design and prediction of new anticoagulants as a selective factor IXa inhibitor via three–dimensional quantitative struc–ture–property relationships of amidinobenzothiophene derivatives, Drug Des. Devel. Ther., 9, 1743–1759.Google Scholar
  68. 68.
    Zhang, T., Liu, Y., Yang, X., Martin, G. E., Yao, H., Shang, J., Bugianesi, R. M., Ellsworth, K. P., Sonatore, L. M., Nizner, P., Sherer, E. C., Hill, S. E., Knemeyer, I. W., Geissler, W. M., Dandliker, P. J., Helmy, R., and Wood, H. B. (2016) Definitive metabolite identification coupled with automated ligand identification system (ALIS) technology: a novel approach to uncover structure–activity relation–ships and guide drug design in a factor IXa inhibitor pro–gram, J. Med. Chem., 59, 1818–1829.CrossRefGoogle Scholar
  69. 69.
    Sakurada, I., Endo, T., Hikita, K., Hirabayashi, T., Hosaka, Y., Kato, Y., Maeda, Y., Matsumoto, S., Mizuno, T., Nagasue, H., Nishimura, T., Shimada, S., Shinozaki, M., Taguchi, K., Takeuchi, K., Yokoyama, T., Hruza, A., Reichert, P., Zhang, T., Wood, H. B., Nakao, K., and Furusako, S. (2017) Discovery of novel aminobenzisoxa–zole derivatives as orally available factor IXa inhibitors, Bioorg. Med. Chem. Lett., 27, 2622–2628.CrossRefGoogle Scholar
  70. 70.
    Bane, C. E., and Gailani, D. (2014) Factor XI as a target for antithrombotic therapy, Drug Discov. Today, 19, 1454–1458.CrossRefPubMedCentralGoogle Scholar
  71. 71.
    Al–Horani, R. A., and Desai, U. R. (2016) Factor XIa inhibitors: a review of the patent literature, Expert. Opin. Ther. Pat., 26, 323–345.CrossRefPubMedCentralGoogle Scholar
  72. 72.
    Corte, J. R., Fang, T., Hangeland, J. J., Friends, T. J., Rendina, A. R., Luettgen, J. M., Bozarth, J. M., Barbera, F. A., Rossi, K. A., Wei, A., Ramamurthy, V., Morin, P. E., Seiffert, D. A., Wexler, R. R., and Quan, M. L. (2015) Pyridine and pyridinone–based factor XIa inhibitors, Bioorg. Med. Chem. Lett., 25, 925–930.CrossRefGoogle Scholar
  73. 73.
    Pinto, D. J. P., Smallheer, J. M., Corte, J. R., Austin, E. J. D., Wang, C., Fang, T., Smith, L. M. (2015) Structure–based design of inhibitors of coagu–lation factor XIa with novel P1 moieties, Bioorg. Med. Chem. Lett., 25, 1635–1642.CrossRefGoogle Scholar
  74. 74.
    Smith, L. M., Orwat, M. J., Hu, Z., Han, W., Wang, C., Rossi, K. A., Gilligan, P. J., Pabbisetty, K. B., Osuna, H., Corte, J. R., Rendina, A. R., Luettgen, J. M., Wong, P. C., Narayanan, R., Harper, T. W., Bozarth, J. M., Crain, E. J., Wei, A., Ramamurthy, V., Morin, P. E., Xin, B., Zheng, J., Seiffert, D. A., Quan, M. L., Lam, P. Y. S., Wexler, R. R., and Pinto, D. J. P. (2016) Novel phenylalanine derived diamides as factor XIa inhibitors, Bioorg. Med. Chem. Lett., 26, 472–478.CrossRefGoogle Scholar
  75. 75.
    Corte, J. R., Fang, T., Pinto, D. J. P. P., Orwat, M. J., Rendina, A. R., Luettgen, J. M., Rossi, K. A., Wei, A., Ramamurthy, V., Myers, J. E., Sheriff, S., Narayanan, R., Harper, T. W., Zheng, J. J., Li, Y.–X. X., Seiffert, D. A., Wexler, R. R., and Quan, M. L. (2016) Orally bioavailable pyridine and pyrimidine–based factor XIa inhibitors: dis–covery of the methyl N–phenyl carbamate P2 prime group, Bioorg. Med. Chem., 24, 2257–2272.CrossRefGoogle Scholar
  76. 76.
    Obaidullah, A. J., and Al–Horani, R. A. (2017) Discovery of chromen–7–yl furan–2–carboxylate as a potent and selec–tive factor XIa inhibitor, Cardiovasc. Hematol. Agents Med. Chem., 15, 40–48.CrossRefGoogle Scholar
  77. 77.
    Pinto, D. J. P., Orwat, M. J., Smith, L. M., Quan, M. L., Lam, P. Y. S., Rossi, K. A., Apedo, A., Bozarth, J. M., Wu, Y., Zheng, J. J., Xin, B., Toussaint, N., Stetsko, P., Gudmundsson, O., Maxwell, B., Crain, E. J., Wong, P. C., Lou, Z., Harper, T. W., Chacko, S. A., Myers, J. E., Sheriff, S., Zhang, H., Hou, X., Mathur, A., Seiffert, D. A., Wexler, R. R., Luettgen, J. M., and Ewing, W. R.(2017) Discovery of a parenteral small molecule coagulation factor XIa inhibitor clinical candidate (BMS–962212), J. Med. Chem., 60, 9703–9723.CrossRefGoogle Scholar
  78. 78.
    Corte, J. R., Fang, T., Osuna, H., Pinto, D. J. P., Rossi, K. A., Myers, J. E., Sheriff, S., Lou, Z., Zheng, J. J., Harper, T. W., Bozarth, J. M., Wu, Y., Luettgen, J. M., Seiffert, D. A., Decicco, C. P., Wexler, R. R., and Quan, M. L. (2017) Structure–based design of macrocyclic factor XIa inhibitors: discovery of the macrocyclic amide linker, J. Med. Chem., 60, 1060–1075.CrossRefGoogle Scholar
  79. 79.
    Wang, C., Corte, J. R., Rossi, K. A., Bozarth, J. M., Wu, Y., Sheriff, S., Myers, J. E., Luettgen, J. M., Seiffert, D. A., Wexler, R. R., and Quan, M. L. (2017) Macrocyclic factor XIa inhibitors, Bioorg. Med. Chem. Lett., 27, 4056–4060.CrossRefGoogle Scholar
  80. 80.
    Hu, Z., Wang, C., Han, W., Rossi, K. A., Bozarth, J. M., Wu, Y., Sheriff, S., Myers, J. E., Luettgen, J. M., Seiffert, D. A., Wexler, R. R., and Quan, M. L. (2018) Pyridazine and pyridazinone derivatives as potent and selective factor XIa inhibitors, Bioorg. Med. Chem. Lett., 28, 987–992.CrossRefGoogle Scholar
  81. 81.
    Neves, A. R., Correia–da–Silva, M., Sousa, E., and Pinto, M. (2016) Structure–activity relationship studies for multi–target antithrombotic drugs, Future Med. Chem., 8, 2305–2355.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • A. S. Kabankin
    • 1
  • E. I. Sinauridze
    • 1
    • 2
  • E. N. Lipets
    • 1
    • 2
  • F. I. Ataullakhanov
    • 1
    • 2
    • 3
    • 4
    Email author
  1. 1.Center for Theoretical Problems of Physicochemical PharmacologyRussian Academy of SciencesMoscowRussia
  2. 2.Dmitry Rogachev National Medical Research Center of Pediatric HematologyOncology and ImmunologyMoscowRussia
  3. 3.Lomonosov Moscow State UniversityFaculty of PhysicsMoscowRussia
  4. 4.Moscow Institute of Physics and TechnologyDolgoprudny, Moscow RegionRussia

Personalised recommendations