Biochemistry (Moscow)

, Volume 84, Issue 1, pp 62–70 | Cite as

The Effect of Antitumor Antibiotic Olivomycin A and Its New Semi-synthetic Derivative Olivamide on the Activity of Murine DNA Methyltransferase Dnmt3a

  • A. V. SergeevEmail author
  • A. N. Tevyashova
  • A. P. Vorobyov
  • E. S. Gromova


Olivomycin A is a highly active antitumor drug that belongs to the family of aureolic acid antibiotics. The antitumor effect of olivomycin A is related to its ability to bind to the DNA minor groove in GC-rich regions as Mg2+-coordinated complexes. Characterization of cellular targets of olivomycin A and its mechanism of action is crucial for the successful application of this antibiotic in clinical practice and development of semi-synthetic derivatives with improved pharmacological properties. Previously, we have shown that minor groove ligands are able to disrupt the key epigenetic process of DNA methylation. In this paper, we have studied the impact of olivomycin A and its improved semi-synthetic analogue N,Ndimethylaminoethylamide of 1′-des-(2,3-dihydroxy-n-butyroyl)-1′-carboxy-olivomycin A (olivamide) on the functioning of de novo DNA methyltransferase Dnmt3a (enzyme that carries out methylation of cytosine residues in the DNA CG-sites in eukaryotic cells) using an in vitro system consisting of the murine Dnmt3a catalytic domain and a 30-mer DNA duplex containing four consecutive GC pairs. We have shown that olivomycin A and olivamide inhibit Dnmt3a with IC50 of 6 ± 1 and 7.1 ± 0.7 μM, respectively. Neither olivomycin A nor olivamide interfered with the formation of the specific enzyme–substrate complex; however, olivomycin A prevented formation of the covalent DNA–Dnmt3a intermediate that is necessary for the methylation reaction to proceed. The inhibitory effects of olivomycin A and olivamide can be explained by the disruption of the enzyme catalytic loop movement through the DNA minor groove (the reaction stage that precedes the covalent bond formation between DNA and the enzyme). The results of this work indicate the epigenetic contribution to the antitumor effect of aureolic acid group antibiotics.


DNA methylation olivomycin A olivamide minor groove ligands DNA methyltransferase Dnmt3a inhibition of methylation 



aureolic acid






DNA methyltransferase


fluorescence polarization




Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Tevyashova, A. N. (2016) Olivomycin A–an antitumor antibiotic of the aureolic acid group, Pharm. Chem. J., 50, 425–430.CrossRefGoogle Scholar
  2. 2.
    DeVita, V. T. J., Hellman, S., and Rosenberg, S. A. (2005) in Cancer: Principles and Practice of Oncology, 7th Edn., Lippincott Williams and Wilkins, Philadelphia.Google Scholar
  3. 3.
    Ogawa, M. (1978) A recent overview of chemotherapy for advanced stomach cancer in Japan, Antibiot. Chemother., 24, 149–159.CrossRefGoogle Scholar
  4. 4.
    Gause, G. F. (1975) Chromomycin, olivomycin, mithramycin, in Antineoplastic and Immunosuppressive Agents. Handbook of Experimental Pharmacology (Sartorelli, A. C., et al., eds.) Springer–Verlag, Berlin–Heidelberg, Vol. 38, pp. 615–622.Google Scholar
  5. 5.
    Kumar, V., Remers, W. A., and Bradner, W. T. (1980) Preparation and antitumor activity of olivomycin A analogs, J. Med. Chem., 23, 376–379.CrossRefGoogle Scholar
  6. 6.
    Tevyashova, A. N., Shtil, A. A., Olsufyeva, E. N., Luzikov, Y. N., Reznikova, M. I., Dezhenkova, L. G., and Kuzmin, V. A. (2011) Modification of olivomycin A at the side chain of the aglycon yields the derivative with perspective antitu–mor characteristics, Bioorg. Med. Chem., 19, 7387–7393.CrossRefGoogle Scholar
  7. 7.
    Lombo, F., Menendez, N., Salas, J. A., and Mendez, C. (2006) The aureolic acid family of antitumor compounds: structure, mode of action, biosynthesis, and novel deriva–tives, Appl. Microbiol. Biot., 73, 1–14.CrossRefGoogle Scholar
  8. 8.
    Cheglakov, I. B., Tevyashova, A. N., Kurbatov, L. K., Tatarsky, V. V., Samusenko, A. V., Preobrazhenskaya, M. N., and Shtil, A. A. (2010) Altered transcription and replication are the mechanisms of cytotoxicity of antitumor antibiotic olivomycin A, Dokl. Biochem. Biophys., 435, 320–322.CrossRefGoogle Scholar
  9. 9.
    Durandin, N., Vinogradov, A., Shtil, A., and Kuzmin, V. (2013) Inhibition of c–Myc transcription by olivomycin A involves preferential drug binding to NFAT/Sp1 promoter site, FEBS J., 280, 86–87.Google Scholar
  10. 10.
    Fernandez–Guizan, A., Mansilla, S., Barcelo, F., Vizcaino, C., Nunez, L. E., Moris, F., Gonzalez, S., and Portugal, J. (2014) The activity of a novel mithramycin analog is relat–ed to its binding to DNA, cellular accumulation, and inhi–bition of Sp1–driven gene transcription, Chem.–Biol. Interact., 219, 123–132.CrossRefGoogle Scholar
  11. 11.
    Gonzalez–Sabin, J., and Moris, F. (2013) Exploring novel opportunities for aureolic acids as anticancer drugs, Biochem. Pharmacol., 2, 1–3.Google Scholar
  12. 12.
    Jurkowska, R. Z., Jurkowski, T. P., and Jeltsch, A. (2011) Structure and function of mammalian DNA methyltrans–ferases, ChemBioChem, 12, 206–222.CrossRefGoogle Scholar
  13. 13.
    Jia, D., Jurkowska, R. Z., Zhang, X., Jeltsch, A., and Cheng, X. (2007) Structure of Dnmt3a bound to Dnmt3L suggests a model for de novo DNA methylation, Nature, 449, 248–251.CrossRefGoogle Scholar
  14. 14.
    Zhang, Z. M., Lu, R., Wang, P., Yu, Y., Chen, D., Gao, L., Liu, S., Ji, D., Rothbart, S. B., Wang, Y., and Wang, G. G. (2018) Structural basis for DNMT3A–mediated de novo DNA methylation, Nature, 554, 387–391.CrossRefGoogle Scholar
  15. 15.
    Jurkowska, R. Z., Rajavelu, A., Anspach, N., Urbanke, C., Jankevicius, G., Ragozin, S., Nellen, W., and Jeltsch, A. (2011) Oligomerization and binding of the Dnmt3a DNA methyl–transferase to parallel DNA molecules heterochromatic local–ization and role of Dnmt3L, J. Biol. Chem., 286, 24200–24207.CrossRefGoogle Scholar
  16. 16.
    Jeltsch, A., and Jurkowska, R. Z. (2013) Multimerization of the Dnmt3a DNA methyltransferase and its functional implications, Prog. Mol. Biol. Transl., 117, 445–464.CrossRefGoogle Scholar
  17. 17.
    Bird, A. (2002) DNA methylation patterns and epigenetic memory, Gene Dev., 16, 6–21.CrossRefGoogle Scholar
  18. 18.
    Eden, A., Gaudet, F., Waghmare, A., and Jaenisch, R. (2003) Chromosomal instability and tumors promoted by DNA hypomethylation, Science, 300, 455.CrossRefGoogle Scholar
  19. 19.
    Jones, P. A., and Baylin, S. B. (2007) The epigenomics of cancer, Cell, 128, 683–692.CrossRefGoogle Scholar
  20. 20.
    Cherepanova, N. A., Ivanov, A. A., Maltseva, D. V., Minero, A. S., Gromyko, A. V., Streltsov, S. A., and Gromova, E. S. (2011) Dimeric bisbenzimidazoles inhibit the DNA methylation catalyzed by the murine Dnmt3a cat–alytic domain, J. Enzyme Inhib. Med. Chem., 26, 295–300.CrossRefGoogle Scholar
  21. 21.
    Darii, M. V., Rakhimova, A. R., Tashlitsky, V. N., Kostyuk, S. V., Veiko, N. N., Ivanov, A. A., Zhuze, A. L, and Gromova, E. S. (2013) Dimeric bisbenzimidazoles: cyto–toxicity and effects on DNA methylation in normal and cancer human cells, Mol. Biol., 47, 259–266.CrossRefGoogle Scholar
  22. 22.
    Kostyuk, S. V., Kvasha, M. A., Khrabrova, D. A., Kirsanova, O. V., Ershova, E. S., Malinovskaya, E. M., Veiko, N. N., Ivanov, A. A., Koval, V. S., Zhuze, A. L., Tashlitsky, V. H., Umriukhin, P. E., Kutsev, S. I., and Gromova, E. S. (2018) Symmetric dimeric bisbenzimida–zoles DBP(n) reduce methylation of RARB and PTEN while significantly increase methylation of rRNA genes in MCF–7 cancer cells, PloS One, 13, e0189826.Google Scholar
  23. 23.
    Baskunov, V. B., Subach, F. V., Kolbanovskiy, A., Kolbanovskiy, M., Eremin, S. A., Johnson, F., Bonala, R., Geacintov, N. E., and Gromova, E. S. (2005) Effects of benzo[a]pyrene–deoxyguanosine lesions on DNA methyla–tion catalyzed by EcoRII DNA methyltransferase and on DNA cleavage effected by EcoRII restriction endonucle–ase, Biochemistry, 44, 1054–1066.CrossRefGoogle Scholar
  24. 24.
    Lukashevich, O. V., Baskunov, V. B., Darii, M. V., Kolbanovskiy, A., Baykov, A. A., and Gromova, E. S. (2011) Dnmt3a–CD is less susceptible to bulky benzo[a]pyrene diol epoxide–derived DNA lesions than prokaryotic DNA methyltransferases, Biochemistry, 50, 875–881.CrossRefGoogle Scholar
  25. 25.
    Laemmli, U. K. (1970) Cleavage of structural proteins dur–ing the assembly of the head of bacteriophage T4, Nature, 227, 680–685.CrossRefGoogle Scholar
  26. 26.
    Bradford, M. M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utiliz–ing the principle of protein–dye binding, Anal. Biochem., 72, 248–254.CrossRefGoogle Scholar
  27. 27.
    Tevyashova, A. N., Durandin, N. A., Vinogradov, A. M., Zbarsky, V. B., Reznikova, M. I., Dezhenkova, L. G., Bykov, E. E., Olsufyeva, E. N., Kuzmin, V. A., Shtil, A. A., and Preobrazhenskaya, M. N. (2013) Role of the acyl groups in carbohydrate chains in cytotoxic properties of olivomycin A, J. Antibiot., 66, 523–530.CrossRefGoogle Scholar
  28. 28.
    Sergeev, A. V., Kirsanova, O. V., Loiko, A. G., Nomerotskaya, E. I., and Gromova, E. S. (2018) Detection of DNA methy–lation by Dnmt3a methyltransferase using methyl–dependent restriction endonucleases, Mol. Biol., 52, 272–278.CrossRefGoogle Scholar
  29. 29.
    Minero, A. S., Lukashevich, O. V., Cherepanova, N. A., Kolbanovskiy, A., Geacintov, N. E., and Gromova, E. S. (2012) Probing murine methyltransferase Dnmt3a interac–tions with benzo[a]pyrene modified DNA by fluorescence methods, FEBS J., 279, 3965–3980.CrossRefGoogle Scholar
  30. 30.
    Gowher, H., and Jeltsch, A. (2002) Molecular enzymology of the catalytic domains of the Dnmt3a and Dnmt3b DNA methyltransferases, J. Biol. Chem., 277, 20409–20414.CrossRefGoogle Scholar
  31. 31.
    Carpenter, M. L., Marks, J. N., and Fox, K. R. (1993) DNA–sequence binding preference of the GC–selective lig–and mithramycin, FEBS J., 215, 561–566.Google Scholar
  32. 32.
    Beniaminov, A. D., Dezhenkova, L. G., Mamaeva, O. K., Shchyolkina, A. K., Tevyashova, A. N., Kaluzhny, D. N., and Shtil, A. A. (2018) Divalent cations are dispensable for binding to DNA of a novel positively charged olivomycin A derivative, PloS One, 13, e0191923.CrossRefGoogle Scholar
  33. 33.
    Vilkaitis, G., Serva, S., Weinhold, E., and Klimasauskas, S. (2001) The mechanism of DNA cytosine–5 methylation. Kinetic and mutational dissection of HhaI methyltrans–ferase, J. Biol. Chem., 276, 20924–20934.CrossRefGoogle Scholar
  34. 34.
    Maltseva, D., Baykov, A., Jeltsch, A., and Gromova, E. (2009) Impact of 7,8–dihydro–8–oxoguanine on methylation of the CpG Site by Dnmt3a, Biochemistry, 48, 1361–1368.CrossRefGoogle Scholar
  35. 35.
    Kirsanova, O. V., Cherepanova, N. A., and Gromova, E. S. (2009) Inhibition of C5–cytosine–DNA–methyltransferas–es, Biochemistry (Moscow), 74, 1175–1186.CrossRefGoogle Scholar
  36. 36.
    Cherepanova, N. A., Zhuze, A. L., and Gromova, E. S. (2010) Inhibition of murine DNA methyltransferase Dnmt3a by DNA duplexes containing pyrimidine–2(1H)–one, Biochemistry (Moscow), 75, 1115–1125.CrossRefGoogle Scholar
  37. 37.
    Hou, M. H., Robinson, H., Gao, Y. G., and Wang, A. H. J. (2004) Crystal structure of the [Mg2+–(chromomycin A3)2]–d(TTGGCCAA)2 complex reveals GGCC binding specificity of the drug dimer chelated by a metal ion, Nucleic Acids Res., 32, 2214–2222.CrossRefGoogle Scholar
  38. 38.
    Gerasimaite, R., Merkiene, E., and Klimasauskas, S. (2011) Direct observation of cytosine flipping and covalent catalysis in a DNA methyltransferase, Nucleic Acids Res., 39, 3771–3780.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2019

Authors and Affiliations

  • A. V. Sergeev
    • 1
    Email author
  • A. N. Tevyashova
    • 2
    • 3
  • A. P. Vorobyov
    • 1
  • E. S. Gromova
    • 1
  1. 1.Faculty of ChemistryLomonosov Moscow State UniversityMoscowRussia
  2. 2.Gause Institute of New AntibioticsMoscowRussia
  3. 3.D. Mendeleev University of Chemical Technology of RussiaMoscowRussia

Personalised recommendations