Advertisement

Biochemistry (Moscow)

, Volume 84, Issue 1, pp 47–55 | Cite as

Identification of Amyloidogenic Regions in the Spine of Insulin Fibrils

  • A. K. SurinEmail author
  • S. Yu. Grishin
  • O. V. Galzitskaya
Article
  • 9 Downloads

Abstract

To reveal conformational changes resulting in the formation of insulin fibrils, it is necessary to identify amyloidogenic regions in the structure of protein monomers. Different models of insulin fibrillogenesis have been proposed previously. However, precise regions responsible for the formation of amyloid fibrils have not been identified. Using bioinformatics programs for predicting amyloidogenic regions, we have determined some common amyloidogenic sequences in the structure of insulin monomers. The use of limited proteolysis and mass spectrometry analysis of the obtained protein fragments resistant to the action of proteases allowed us to identify amino acid sequences in the insulin structure that can form the spine of the insulin fibrils. The obtained results are in agreement with the earlier proposed model of fibril formation from the ring-like oligomers and can be used for designing insulin analogs resistant to amyloidogenesis.

Keywords

amyloidogenic regions FoldAmyloid insulin ring-like oligomers mass spectrometry protein proteolysis 

Abbreviation

a.a.

amino acid residue

LC-MS

liquid chromatography/mass spectrometry

m/z

mass-to-charge ratio

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kelly, J. W. (1996) Alternative conformations of amyloido–genic proteins govern their behavior, Curr. Opin. Struct. Biol., 6, 11–17.CrossRefGoogle Scholar
  2. 2.
    Dobson, C. M. (2001) Protein folding and its links with human disease, Biochem. Soc. Symp., 68, 1–26.CrossRefGoogle Scholar
  3. 3.
    Galzitskaia, O. V., Garbuzinskii, S. A., and Lobanov, M. Iu. (2006) A search for amyloidogenic regions in protein chain, Mol. Biol. (Moscow), 40, 910–918.Google Scholar
  4. 4.
    Sipe, J. D., Benson, M. D., Buxbaum, J. N., Ikeda, S., Merlini, G., Saraiva, M. J., and Westermark, P. (2012) Amyloid fibril protein nomenclature: 2012 recommenda–tions from the Nomenclature Committee of the International Society of Amyloidosis, Amyloid, 19, 167–170.CrossRefGoogle Scholar
  5. 5.
    O’Donnell, C. W., Waldispuhl, J., Lis, M., Halfmann, R., Devadas, S., Lindquist, S., and Berger, B. (2011). A method for probing the mutational landscape of amyloid structure, Bioinformatics, 27, 34–42.Google Scholar
  6. 6.
    Sanger, F., and Tuppy, H. (1951) The amino–acid sequence in the phenylalanyl chain of insulin. 1. The identification of lower peptides from partial hydrolysates, Biochem. J., 49, 463–481.CrossRefGoogle Scholar
  7. 7.
    Sanger, F., and Tuppy, H. (1951) The amino–acid sequence in the phenylalanyl chain of insulin. 2. The investigation of peptides from enzymic hydrolysates, Biochem. J., 49, 481–490.CrossRefGoogle Scholar
  8. 8.
    Waugh, D. F. (1941) The properties of protein fibers pro–duced reversibly from soluble protein molecules, Am. J. Physiol., 133, 484–485.Google Scholar
  9. 9.
    Klunk, W. E., Pettegrew, J. W., and Abraham, D. J. (1989) Quantitative evaluation of congo red binding to amyloid–like proteins with a beta–pleated sheet conformation, J. Histochem. Cytochem., 37, 1273–1281.CrossRefGoogle Scholar
  10. 10.
    Brange, J., Andersen, L., Laursen, E. D., Meyn, G., and Rasmussen, E. (1997) Toward understanding insulin fibril–lation, J. Pharm. Sci., 86, 517–525.CrossRefGoogle Scholar
  11. 11.
    Selivanova, O. M., Grishin, S. Yu., Glyakina, A. V., Sadgyan, A. S., Ushakova, N. I., and Galzitskaya, O. V. (2018) Analysis of insulin analogs and the strategy of their further development, Biochemistry (Moscow), 83, 146–162.CrossRefGoogle Scholar
  12. 12.
    Baker, E. N., Blundell, T. L., Cutfield J. F., Cutfield, S. M., Dodson, E. J., Dodson, G. G., Hodgkin, D. M. C., Hubbard, R. E., Isaacs, N. W., Reynolds, C. D., Sakabe, K., Sakabe, N., and Vijayan, N. M. (1988) The structure of 2Zn pig insulin crystals at 1.5 Å resolution, Philos. Trans. R. Soc. Lond. B Biol. Sci., 319, 369–456.CrossRefGoogle Scholar
  13. 13.
    Cutfield, J. F., Cutfield, S. M., Dodson, E. J., Dodson, G. G., Emdin, S. F., and Reynolds, C. D. (1979) Structure and biological activity of hagfish insulin, J. Mol. Biol., 132, 85–100.CrossRefGoogle Scholar
  14. 14.
    Frankær, C. G., Sonderby, P., Bang, M. B., Mateiu, R. V., Groenning, M., Bukrinski, J., and Harris, P. (2017) Insulin fibrillation: the influence and coordination of Zn2+, J. Struct. Biol., 199, 27–38.CrossRefGoogle Scholar
  15. 15.
    Phillips, N. B., Whittaker, J., Ismail–Beigi, F., and Weiss, M. A. (2012) Insulin fibrillation and protein design: topo–logical resistance of single–chain analogs to thermal degra–dation with application to a pump reservoir, J. Diabetes Sci. Technol., 6, 277–288.CrossRefGoogle Scholar
  16. 16.
    Nielsen, L., Frokjaer, S., Brange, J., Uversky, V. N., and Fink, A. L. (2001) Probing the mechanism of insulin fibril formation with insulin mutants, Biochemistry, 40, 8397–8409.CrossRefGoogle Scholar
  17. 17.
    Ahmad, A., Millett, I. S., Doniach, S., Uversky, V. N., and Fink, A. L. (2003) Partially folded intermediates in insulin fibrillation, Biochemistry, 42, 11404–11416.CrossRefGoogle Scholar
  18. 18.
    Vestergaard, B., Groenning, M., Roessle, M., Kastrup, J. S., Weert, M., Flink, J. M., Frokjaer, S., Gajhede, M., and Svergun, D. I. (2007) A helical structural nucleus is the pri–mary elongating unit of insulin amyloid fibrils, PLoS Biol., 5, 134–146.CrossRefGoogle Scholar
  19. 19.
    Jimenez, J. L., Nettleton, E. J., Bouchard, M., Robinson, C. V., Dobson, C. M., and Saibil, H. R. (2002) The protofilament structure of insulin amyloid fibrils, Proc. Natl. Acad. Sci. USA, 99, 9196–9201.CrossRefGoogle Scholar
  20. 20.
    Kajava, A. V., Baxa, U., and Steven, A. C. (2010) β–Arcades: recurring motifs in naturally occurring and dis–ease–related amyloid fibrils, FASEB J., 24, 1311–1319.Google Scholar
  21. 21.
    Selivanova, O. M., Suvorina, M. Y., Surin, A. K., Dovidchenko, N. V., and Galzitskaya, O. V. (2017) Insulin and lispro insulin: what is common and different in their behavior? Curr. Protein Pept. Sci., 18, 57–64.CrossRefGoogle Scholar
  22. 22.
    Meersman, F., and Dobson, C. M. (2006) Probing the pressure–temperature stability of amyloid fibrils provides new insights into their molecular properties, Biochim. Biophys. Acta, 1764, 452–460.CrossRefGoogle Scholar
  23. 23.
    Malisauskas, M., Weise, C., Yanamandra, K., Wolf–Watz, M., and Morozova–Roche, L. (2010) Lability landscape and protease resistance of human insulin amyloid: a new insight into its molecular properties, J. Mol. Biol., 396, 60–74.CrossRefGoogle Scholar
  24. 24.
    Kheterpal, I., Williams, A., Murphy, C., Bledsoe, B., and Wetzel, R. (2001) Structural features of the Abeta amyloid fibril elucidated by limited proteolysis, Biochemistry, 40, 11757–11767.CrossRefGoogle Scholar
  25. 25.
    Piejko, M., Dec, R., Babenko, V., Hoang, A., Szewczyk, M., Mak, P., and Dzwolak, W. (2015) Highly amyloido–genic two–chain peptide fragments are released upon partial digestion of insulin with pepsin, J. Biol. Chem., 290, 5947–5958.CrossRefGoogle Scholar
  26. 26.
    Surin, A. K., Grigorashvili, E. I., Suvorina, M. Y., Selivanova, O. M., and Galzitskaya, O. V. (2016) Determination of regions involved in amyloid fibril formation for Aβ(1–40) peptide, Biochemistry (Moscow), 81, 762–769.CrossRefGoogle Scholar
  27. 27.
    Selivanova, O. M., Suvorina, M. Y., Dovidchenko, N. V., Eliseeva, I. A., Surin, A. K., Finkelstein, A. V., Schmatchenko, V. V., and Galzitskaya, O. V. (2014) How to determine the size of folding nuclei of protofibrils from the concentration dependence of the rate and lag–time of aggregation. II. Experimental application for insulin and LysPro insulin: aggregation morphology, kinetics, and sizes of nuclei, J. Phys. Chem. B, 118, 1198–1206.CrossRefGoogle Scholar
  28. 28.
    Porter, R. R. (1953) Partition chromatography of insulin and other proteins, Biochem. J., 53, 320–328.CrossRefGoogle Scholar
  29. 29.
    Garbuzynskiy, S. O., Lobanov, M. Y., and Galzitskaya, O. V. (2010) FoldAmyloid: a method of prediction of amy–loidogenic regions from protein sequence, Bioinformatics, 26, 326–332.CrossRefGoogle Scholar
  30. 30.
    Ahmed, A. B., Znassi, N., Chateau, M.–T., and Kajava, A. V. (2015) A structure–based approach to predict predisposi–tion to amyloidosis, Alzheimers Dement., 11, 681–690.CrossRefGoogle Scholar
  31. 31.
    Trovato, A., Seno, F., and Tosatto, S. C. E. (2007) The PASTA server for protein aggregation prediction, Protein Eng. Des. Sel., 20, 521–523.CrossRefGoogle Scholar
  32. 32.
    Walsh, I., Seno, F., Tosatto, S. C. E., and Trovato, A. (2014) PASTA 2.0: an improved server for protein aggrega–tion prediction, Nucleic Acids Res., 42, 301–307.CrossRefGoogle Scholar
  33. 33.
    Maurer–Stroh, S., Debulpaep, M., Kuemmerer, N., Lopez de la Paz, M., Martins, I. C., Reumers, J., Morris, K. L., Copland, A., Serpell, L., Serrano, L., Schymkowitz, J. W. H., and Rousseau, F. (2010) Exploring the sequence deter–minants of amyloid structure using position–specific scor–ing matrices, Nat. Methods, 7, 237–242.CrossRefGoogle Scholar
  34. 34.
    Conchillo–Sole, O., de Groot, N. S., Aviles, F. X., Vendrell, J., Daura, X., and Ventura, S. (2007) AGGRESCAN: a server for the prediction and evaluation of “hot spots” of aggregation in polypeptides, BMC Bioinformatics, 8, 1–17.CrossRefGoogle Scholar
  35. 35.
    Zurdo, J., Guijarro, J. I., and Dobson, C. M. (2001) Preparation and characterization of purified amyloid fib–rils, J. Am. Chem. Soc., 123, 8141–8142.CrossRefGoogle Scholar
  36. 36.
    Galzitskaya, O. V., and Selivanova, O. M. (2017) Rosetta stone for amyloid fibrils: the key role of ring–like oligomers in amyloidogenesis, J. Alzheimers Dis., 59, 785–795.CrossRefGoogle Scholar
  37. 37.
    Olsen, J. V., Ong, S. E., and Mann, M. (2004) Trypsin cleaves exclusively C–terminal to arginine and lysine residues, Mol. Cell. Proteomics, 3, 608–614.CrossRefGoogle Scholar
  38. 38.
    Appel, W. (1986) Chymotrypsin: molecular and catalytic properties, Clin. Biochem., 19, 317–322.CrossRefGoogle Scholar
  39. 39.
    Kraus, E., Kiltz, H. H., and Femfert, U. F. (1976) The specificity of proteinase K against oxidized insulin B chain, Hoppe Seylers Z. Physiol. Chem., 357, 233–237.CrossRefGoogle Scholar
  40. 40.
    Morihara, K., and Tszuki, H. (1975) Specificity of pro–teinase K from Tritirachium album limber for synthetic pep–tides, Agricult. Biol. Chem., 39, 1489–1492.Google Scholar
  41. 41.
    Polverino de Laureto, P., Taddei, N., Frare, E., Capanni, C., Costantini, S., Zurdo, J., Chiti, F., Dobson, C. M., and Fontana, A. (2003) Protein aggregation and amyloid fibril formation by an SH3 domain probed by limited proteolysis, J. Mol. Biol., 334, 129–141.CrossRefGoogle Scholar
  42. 42.
    Selivanova, O. M., and Galzitskaya, O. V. (2012) Structural polymorphism and possible pathways of amyloid fibril for–mation on the example of insulin protein, Biochemistry (Moscow), 77, 1237–1247.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2018

Authors and Affiliations

  • A. K. Surin
    • 1
    • 2
    • 3
    Email author
  • S. Yu. Grishin
    • 1
    • 4
  • O. V. Galzitskaya
    • 1
  1. 1.Institute of Protein ResearchRussian Academy of SciencesPushchinoRussia
  2. 2.State Research Center for Applied Microbiology and Biotechnology142279 ObolenskRussia
  3. 3.Gamaleya Research Center of Epidemiology and MicrobiologyMoscowRussia
  4. 4.Lomonosov Moscow State UniversityMoscowRussia

Personalised recommendations